Cargando…
Cancer-derived exosomal miR-138-5p modulates polarization of tumor-associated macrophages through inhibition of KDM6B
Rationale: Differential activation of macrophages correlates closely with tumor progression, and the epigenetic factor lysine demethylase 6B (KDM6B, previously named JMJD3) mediates the regulation of macrophage polarization through an unknown mechanism. Methods: We developed a suspension coculture s...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8171095/ https://www.ncbi.nlm.nih.gov/pubmed/34093857 http://dx.doi.org/10.7150/thno.51864 |
_version_ | 1783702365577150464 |
---|---|
author | Xun, Jing Du, Lingfang Gao, Ruifang Shen, Long Wang, Dekun Kang, Lichun Chen, Chuan'ai Zhang, Zhujun Zhang, Yuying Yue, Shijing Feng, Shuxin Xiang, Rong Mi, Xue Tan, Xiaoyue |
author_facet | Xun, Jing Du, Lingfang Gao, Ruifang Shen, Long Wang, Dekun Kang, Lichun Chen, Chuan'ai Zhang, Zhujun Zhang, Yuying Yue, Shijing Feng, Shuxin Xiang, Rong Mi, Xue Tan, Xiaoyue |
author_sort | Xun, Jing |
collection | PubMed |
description | Rationale: Differential activation of macrophages correlates closely with tumor progression, and the epigenetic factor lysine demethylase 6B (KDM6B, previously named JMJD3) mediates the regulation of macrophage polarization through an unknown mechanism. Methods: We developed a suspension coculture system comprising breast cancer cells and macrophages and used RT-qPCR and western blotting to measure KDM6B expression. Bioinformatics and luciferase reporter assays were used to identify candidate microRNAs of cancer cells responsible for the downregulation of KDM6B. To determine if exosomes mediated the transfer of miR-138-5p between cancer cells to macrophages, we treated macrophages with exosomes collected from the conditioned medium of cancer cells. The effects of exosomal miR-138-5p on macrophage polarization were measured using RT-qPCR, flow cytometry, and chromatin immunoprecipitation assays. We employed a mouse model of breast cancer, metastatic to the lung, to evaluate the effects on tumor metastasis of macrophages treated with miR-138-5p-enriched exosomes. To develop a diagnostic evaluation index, the levels of exosomal miR-138-5p in samples from patients with breast cancer were compared to those of controls. Results: Coculture of breast cancer cells led to downregulation of KDM6B expression in macrophages. Cancer cell-derived exosomal miR-138-5p inhibited M1 polarization and promoted M2 polarization through inhibition of KDM6B expression in macrophages. Macrophages treated with exosomal miR-138-5p promoted lung metastasis, and the level of circulating exosomal miR-138-5p positively correlated with the progression of breast cancer. Conclusion: Our data suggest that miR-138-5p was delivered from breast cancer cells to tumor-associated macrophages via exosomes to downregulate KDM6B expression, inhibit M1 polarization, and stimulate M2 polarization. Therefore, exosomal miR-138-5p represents a promising prognostic marker and target for the treatment of breast cancer. |
format | Online Article Text |
id | pubmed-8171095 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Ivyspring International Publisher |
record_format | MEDLINE/PubMed |
spelling | pubmed-81710952021-06-03 Cancer-derived exosomal miR-138-5p modulates polarization of tumor-associated macrophages through inhibition of KDM6B Xun, Jing Du, Lingfang Gao, Ruifang Shen, Long Wang, Dekun Kang, Lichun Chen, Chuan'ai Zhang, Zhujun Zhang, Yuying Yue, Shijing Feng, Shuxin Xiang, Rong Mi, Xue Tan, Xiaoyue Theranostics Research Paper Rationale: Differential activation of macrophages correlates closely with tumor progression, and the epigenetic factor lysine demethylase 6B (KDM6B, previously named JMJD3) mediates the regulation of macrophage polarization through an unknown mechanism. Methods: We developed a suspension coculture system comprising breast cancer cells and macrophages and used RT-qPCR and western blotting to measure KDM6B expression. Bioinformatics and luciferase reporter assays were used to identify candidate microRNAs of cancer cells responsible for the downregulation of KDM6B. To determine if exosomes mediated the transfer of miR-138-5p between cancer cells to macrophages, we treated macrophages with exosomes collected from the conditioned medium of cancer cells. The effects of exosomal miR-138-5p on macrophage polarization were measured using RT-qPCR, flow cytometry, and chromatin immunoprecipitation assays. We employed a mouse model of breast cancer, metastatic to the lung, to evaluate the effects on tumor metastasis of macrophages treated with miR-138-5p-enriched exosomes. To develop a diagnostic evaluation index, the levels of exosomal miR-138-5p in samples from patients with breast cancer were compared to those of controls. Results: Coculture of breast cancer cells led to downregulation of KDM6B expression in macrophages. Cancer cell-derived exosomal miR-138-5p inhibited M1 polarization and promoted M2 polarization through inhibition of KDM6B expression in macrophages. Macrophages treated with exosomal miR-138-5p promoted lung metastasis, and the level of circulating exosomal miR-138-5p positively correlated with the progression of breast cancer. Conclusion: Our data suggest that miR-138-5p was delivered from breast cancer cells to tumor-associated macrophages via exosomes to downregulate KDM6B expression, inhibit M1 polarization, and stimulate M2 polarization. Therefore, exosomal miR-138-5p represents a promising prognostic marker and target for the treatment of breast cancer. Ivyspring International Publisher 2021-05-03 /pmc/articles/PMC8171095/ /pubmed/34093857 http://dx.doi.org/10.7150/thno.51864 Text en © The author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. |
spellingShingle | Research Paper Xun, Jing Du, Lingfang Gao, Ruifang Shen, Long Wang, Dekun Kang, Lichun Chen, Chuan'ai Zhang, Zhujun Zhang, Yuying Yue, Shijing Feng, Shuxin Xiang, Rong Mi, Xue Tan, Xiaoyue Cancer-derived exosomal miR-138-5p modulates polarization of tumor-associated macrophages through inhibition of KDM6B |
title | Cancer-derived exosomal miR-138-5p modulates polarization of tumor-associated macrophages through inhibition of KDM6B |
title_full | Cancer-derived exosomal miR-138-5p modulates polarization of tumor-associated macrophages through inhibition of KDM6B |
title_fullStr | Cancer-derived exosomal miR-138-5p modulates polarization of tumor-associated macrophages through inhibition of KDM6B |
title_full_unstemmed | Cancer-derived exosomal miR-138-5p modulates polarization of tumor-associated macrophages through inhibition of KDM6B |
title_short | Cancer-derived exosomal miR-138-5p modulates polarization of tumor-associated macrophages through inhibition of KDM6B |
title_sort | cancer-derived exosomal mir-138-5p modulates polarization of tumor-associated macrophages through inhibition of kdm6b |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8171095/ https://www.ncbi.nlm.nih.gov/pubmed/34093857 http://dx.doi.org/10.7150/thno.51864 |
work_keys_str_mv | AT xunjing cancerderivedexosomalmir1385pmodulatespolarizationoftumorassociatedmacrophagesthroughinhibitionofkdm6b AT dulingfang cancerderivedexosomalmir1385pmodulatespolarizationoftumorassociatedmacrophagesthroughinhibitionofkdm6b AT gaoruifang cancerderivedexosomalmir1385pmodulatespolarizationoftumorassociatedmacrophagesthroughinhibitionofkdm6b AT shenlong cancerderivedexosomalmir1385pmodulatespolarizationoftumorassociatedmacrophagesthroughinhibitionofkdm6b AT wangdekun cancerderivedexosomalmir1385pmodulatespolarizationoftumorassociatedmacrophagesthroughinhibitionofkdm6b AT kanglichun cancerderivedexosomalmir1385pmodulatespolarizationoftumorassociatedmacrophagesthroughinhibitionofkdm6b AT chenchuanai cancerderivedexosomalmir1385pmodulatespolarizationoftumorassociatedmacrophagesthroughinhibitionofkdm6b AT zhangzhujun cancerderivedexosomalmir1385pmodulatespolarizationoftumorassociatedmacrophagesthroughinhibitionofkdm6b AT zhangyuying cancerderivedexosomalmir1385pmodulatespolarizationoftumorassociatedmacrophagesthroughinhibitionofkdm6b AT yueshijing cancerderivedexosomalmir1385pmodulatespolarizationoftumorassociatedmacrophagesthroughinhibitionofkdm6b AT fengshuxin cancerderivedexosomalmir1385pmodulatespolarizationoftumorassociatedmacrophagesthroughinhibitionofkdm6b AT xiangrong cancerderivedexosomalmir1385pmodulatespolarizationoftumorassociatedmacrophagesthroughinhibitionofkdm6b AT mixue cancerderivedexosomalmir1385pmodulatespolarizationoftumorassociatedmacrophagesthroughinhibitionofkdm6b AT tanxiaoyue cancerderivedexosomalmir1385pmodulatespolarizationoftumorassociatedmacrophagesthroughinhibitionofkdm6b |