Cargando…
Deep neural network analysis of nanoparticle ordering to identify defects in layered carbon materials
Smoothness/defectiveness of the carbon material surface is a key issue for many applications, spanning from electronics to reinforced materials, adsorbents and catalysis. Several surface defects cannot be observed with conventional analytic techniques, thus requiring the development of a new imaging...
Autores principales: | Boiko, Daniil A., Pentsak, Evgeniy O., Cherepanova, Vera A., Gordeev, Evgeniy G., Ananikov, Valentine P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8171319/ https://www.ncbi.nlm.nih.gov/pubmed/34163833 http://dx.doi.org/10.1039/d0sc05696k |
Ejemplares similares
-
Electron microscopy dataset for the recognition of nanoscale ordering effects and location of nanoparticles
por: Boiko, Daniil A., et al.
Publicado: (2020) -
How to Make a Cocktail of Palladium Catalysts with Cola and Alcohol: Heteroatom Doping vs. Nanoscale Morphology of Carbon Supports
por: Pentsak, Evgeniy O., et al.
Publicado: (2021) -
Automated Recognition of Nanoparticles in Electron Microscopy Images of Nanoscale Palladium Catalysts
por: Boiko, Daniil A., et al.
Publicado: (2022) -
Integration of thermal imaging and neural networks for mechanical strength analysis and fracture prediction in 3D-printed plastic parts
por: Boiko, Daniil A., et al.
Publicado: (2022) -
Revealing interactions of layered polymeric materials at solid-liquid interface for building solvent compatibility charts for 3D printing applications
por: Erokhin, Kirill S., et al.
Publicado: (2019)