Cargando…

Path planning for the Platonic solids on prescribed grids by edge-rolling

The five Platonic solids—tetrahedron, cube, octahedron, dodecahedron, and icosahedron—have found many applications in mathematics, science, and art. Path planning for the Platonic solids had been suggested, but not validated, except for solving the rolling-cube puzzles for a cubic dice. We developed...

Descripción completa

Detalles Bibliográficos
Autores principales: Lam, Ngoc Tam, Howard, Ian, Cui, Lei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8171926/
https://www.ncbi.nlm.nih.gov/pubmed/34077470
http://dx.doi.org/10.1371/journal.pone.0252613
Descripción
Sumario:The five Platonic solids—tetrahedron, cube, octahedron, dodecahedron, and icosahedron—have found many applications in mathematics, science, and art. Path planning for the Platonic solids had been suggested, but not validated, except for solving the rolling-cube puzzles for a cubic dice. We developed a path-planning algorithm based on the breadth-first-search algorithm that generates a shortest path for each Platonic solid to reach a desired pose, including position and orientation, from an initial one on prescribed grids by edge-rolling. While it is straightforward to generate triangular and square grids, various methods exist for regular-pentagon tiling. We chose the Penrose tiling because it has five-fold symmetry. We discovered that a tetrahedron could achieve only one orientation for a particular position.