Cargando…

RAMRSGL: A Robust Adaptive Multinomial Regression Model for Multicancer Classification

In view of the challenges of the group Lasso penalty methods for multicancer microarray data analysis, e.g., dividing genes into groups in advance and biological interpretability, we propose a robust adaptive multinomial regression with sparse group Lasso penalty (RAMRSGL) model. By adopting the ove...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Lei, Li, Juntao, Liu, Juanfang, Chang, Mingming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8172296/
https://www.ncbi.nlm.nih.gov/pubmed/34122617
http://dx.doi.org/10.1155/2021/5584684
_version_ 1783702514013569024
author Wang, Lei
Li, Juntao
Liu, Juanfang
Chang, Mingming
author_facet Wang, Lei
Li, Juntao
Liu, Juanfang
Chang, Mingming
author_sort Wang, Lei
collection PubMed
description In view of the challenges of the group Lasso penalty methods for multicancer microarray data analysis, e.g., dividing genes into groups in advance and biological interpretability, we propose a robust adaptive multinomial regression with sparse group Lasso penalty (RAMRSGL) model. By adopting the overlapping clustering strategy, affinity propagation clustering is employed to obtain each cancer gene subtype, which explores the group structure of each cancer subtype and merges the groups of all subtypes. In addition, the data-driven weights based on noise are added to the sparse group Lasso penalty, combining with the multinomial log-likelihood function to perform multiclassification and adaptive group gene selection simultaneously. The experimental results on acute leukemia data verify the effectiveness of the proposed method.
format Online
Article
Text
id pubmed-8172296
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-81722962021-06-11 RAMRSGL: A Robust Adaptive Multinomial Regression Model for Multicancer Classification Wang, Lei Li, Juntao Liu, Juanfang Chang, Mingming Comput Math Methods Med Research Article In view of the challenges of the group Lasso penalty methods for multicancer microarray data analysis, e.g., dividing genes into groups in advance and biological interpretability, we propose a robust adaptive multinomial regression with sparse group Lasso penalty (RAMRSGL) model. By adopting the overlapping clustering strategy, affinity propagation clustering is employed to obtain each cancer gene subtype, which explores the group structure of each cancer subtype and merges the groups of all subtypes. In addition, the data-driven weights based on noise are added to the sparse group Lasso penalty, combining with the multinomial log-likelihood function to perform multiclassification and adaptive group gene selection simultaneously. The experimental results on acute leukemia data verify the effectiveness of the proposed method. Hindawi 2021-05-25 /pmc/articles/PMC8172296/ /pubmed/34122617 http://dx.doi.org/10.1155/2021/5584684 Text en Copyright © 2021 Lei Wang et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Wang, Lei
Li, Juntao
Liu, Juanfang
Chang, Mingming
RAMRSGL: A Robust Adaptive Multinomial Regression Model for Multicancer Classification
title RAMRSGL: A Robust Adaptive Multinomial Regression Model for Multicancer Classification
title_full RAMRSGL: A Robust Adaptive Multinomial Regression Model for Multicancer Classification
title_fullStr RAMRSGL: A Robust Adaptive Multinomial Regression Model for Multicancer Classification
title_full_unstemmed RAMRSGL: A Robust Adaptive Multinomial Regression Model for Multicancer Classification
title_short RAMRSGL: A Robust Adaptive Multinomial Regression Model for Multicancer Classification
title_sort ramrsgl: a robust adaptive multinomial regression model for multicancer classification
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8172296/
https://www.ncbi.nlm.nih.gov/pubmed/34122617
http://dx.doi.org/10.1155/2021/5584684
work_keys_str_mv AT wanglei ramrsglarobustadaptivemultinomialregressionmodelformulticancerclassification
AT lijuntao ramrsglarobustadaptivemultinomialregressionmodelformulticancerclassification
AT liujuanfang ramrsglarobustadaptivemultinomialregressionmodelformulticancerclassification
AT changmingming ramrsglarobustadaptivemultinomialregressionmodelformulticancerclassification