Cargando…
A generalized deep learning framework for whole-slide image segmentation and analysis
Histopathology tissue analysis is considered the gold standard in cancer diagnosis and prognosis. Whole-slide imaging (WSI), i.e., the scanning and digitization of entire histology slides, are now being adopted across the world in pathology labs. Trained histopathologists can provide an accurate dia...
Autores principales: | Khened, Mahendra, Kori, Avinash, Rajkumar, Haran, Krishnamurthi, Ganapathy, Srinivasan, Balaji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8172839/ https://www.ncbi.nlm.nih.gov/pubmed/34078928 http://dx.doi.org/10.1038/s41598-021-90444-8 |
Ejemplares similares
-
Demystifying Brain Tumor Segmentation Networks: Interpretability and Uncertainty Analysis
por: Natekar, Parth, et al.
Publicado: (2020) -
Corrigendum: Demystifying Brain Tumor Segmentation Networks: Interpretability and Uncertainty Analysis
por: Natekar, Parth, et al.
Publicado: (2021) -
Segmentation and Classification in Digital Pathology for Glioma Research: Challenges and Deep Learning Approaches
por: Kurc, Tahsin, et al.
Publicado: (2020) -
A deep learning framework for automated classification of histopathological kidney whole-slide images
por: Abdeltawab, Hisham A., et al.
Publicado: (2022) -
Tubule-U-Net: a novel dataset and deep learning-based tubule segmentation framework in whole slide images of breast cancer
por: Tekin, Eren, et al.
Publicado: (2023)