Cargando…
A performance evaluation of despiking algorithms for eddy covariance data
Spike detection for raw high-frequency eddy covariance time series is a challenging task because of the confounding effect caused by complex dynamics and the high level of noise affecting such data. To cope with these features, a new despiking procedure rooted on robust functionals is proposed. By p...
Autor principal: | Vitale, Domenico |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8172850/ https://www.ncbi.nlm.nih.gov/pubmed/34078995 http://dx.doi.org/10.1038/s41598-021-91002-y |
Ejemplares similares
-
The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data
por: Pastorello, Gilberto, et al.
Publicado: (2020) -
A wavelet method for modeling and despiking motion artifacts from resting-state fMRI time series
por: Patel, Ameera X., et al.
Publicado: (2014) -
Methodological challenges and new perspectives of shifting vegetation phenology in eddy covariance data
por: Panwar, Annu, et al.
Publicado: (2023) -
Author Correction: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data
por: Pastorello, Gilberto, et al.
Publicado: (2021) -
Evaluating the convergence between eddy-covariance and biometric methods for assessing carbon budgets of forests
por: Campioli, M., et al.
Publicado: (2016)