Cargando…

Learning from crowds in digital pathology using scalable variational Gaussian processes

The volume of labeled data is often the primary determinant of success in developing machine learning algorithms. This has increased interest in methods for leveraging crowds to scale data labeling efforts, and methods to learn from noisy crowd-sourced labels. The need to scale labeling is acute but...

Descripción completa

Detalles Bibliográficos
Autores principales: López-Pérez, Miguel, Amgad, Mohamed, Morales-Álvarez, Pablo, Ruiz, Pablo, Cooper, Lee A. D., Molina, Rafael, Katsaggelos, Aggelos K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8172863/
https://www.ncbi.nlm.nih.gov/pubmed/34078955
http://dx.doi.org/10.1038/s41598-021-90821-3

Ejemplares similares