Cargando…
Learning from crowds in digital pathology using scalable variational Gaussian processes
The volume of labeled data is often the primary determinant of success in developing machine learning algorithms. This has increased interest in methods for leveraging crowds to scale data labeling efforts, and methods to learn from noisy crowd-sourced labels. The need to scale labeling is acute but...
Autores principales: | López-Pérez, Miguel, Amgad, Mohamed, Morales-Álvarez, Pablo, Ruiz, Pablo, Cooper, Lee A. D., Molina, Rafael, Katsaggelos, Aggelos K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8172863/ https://www.ncbi.nlm.nih.gov/pubmed/34078955 http://dx.doi.org/10.1038/s41598-021-90821-3 |
Ejemplares similares
-
Variational Bayesian Pansharpening with Super-Gaussian Sparse Image Priors
por: Pérez-Bueno, Fernando, et al.
Publicado: (2020) -
Super resolution of images and video
por: Katsaggelos, Aggelos K, et al.
Publicado: (2007) -
Variational Bayesian causal connectivity analysis for fMRI
por: Luessi, Martin, et al.
Publicado: (2014) -
Deep Gaussian processes for biogeophysical parameter retrieval and model inversion
por: Svendsen, Daniel Heestermans, et al.
Publicado: (2020) -
Scalable Gaussian Processes and the search for exoplanets
por: FOREMANMACKEY, Daniel
Publicado: (2015)