Cargando…
Accelerated mapping of electronic density of states patterns of metallic nanoparticles via machine-learning
Within first-principles density functional theory (DFT) frameworks, it is challenging to predict the electronic structures of nanoparticles (NPs) accurately but fast. Herein, a machine-learning architecture is proposed to rapidly but reasonably predict electronic density of states (DOS) patterns of...
Autores principales: | Bang, Kihoon, Yeo, Byung Chul, Kim, Donghun, Han, Sang Soo, Lee, Hyuck Mo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8173009/ https://www.ncbi.nlm.nih.gov/pubmed/34078997 http://dx.doi.org/10.1038/s41598-021-91068-8 |
Ejemplares similares
-
Machine learning-enabled exploration of the electrochemical stability of real-scale metallic nanoparticles
por: Bang, Kihoon, et al.
Publicado: (2023) -
Pattern Learning Electronic Density of States
por: Yeo, Byung Chul, et al.
Publicado: (2019) -
Automated analysis of transmission electron micrographs of metallic nanoparticles by machine learning
por: Gumbiowski, Nina, et al.
Publicado: (2023) -
Characterization of relativistic electron–positron beams produced with laser-accelerated GeV electrons
por: Song, Hoon, et al.
Publicado: (2023) -
Efficiently accelerated free electrons by metallic laser accelerator
por: Zheng, Dingguo, et al.
Publicado: (2023)