Cargando…

Thalamic but Not Subthalamic Neuromodulation Simplifies Word Use in Spontaneous Language

Several investigations have shown language impairments following electrode implantation surgery for Deep Brain Stimulation (DBS) in movement disorders. The impact of the actual stimulation, however, differs between DBS targets with further deterioration in formal language tests induced by thalamic D...

Descripción completa

Detalles Bibliográficos
Autores principales: Tiedt, Hannes Ole, Ehlen, Felicitas, Wyrobnik, Michelle, Klostermann, Fabian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8173144/
https://www.ncbi.nlm.nih.gov/pubmed/34093151
http://dx.doi.org/10.3389/fnhum.2021.656188
Descripción
Sumario:Several investigations have shown language impairments following electrode implantation surgery for Deep Brain Stimulation (DBS) in movement disorders. The impact of the actual stimulation, however, differs between DBS targets with further deterioration in formal language tests induced by thalamic DBS in contrast to subtle improvement observed in subthalamic DBS. Here, we studied speech samples from interviews with participants treated with DBS of the thalamic ventral intermediate nucleus (VIM) for essential tremor (ET), or the subthalamic nucleus (STN) for Parkinson’s disease (PD), and healthy volunteers (each n = 13). We analyzed word frequency and the use of open and closed class words. Active DBS increased word frequency in case of VIM, but not STN stimulation. Further, relative to controls, both DBS groups produced fewer open class words. Whereas VIM DBS further decreased the proportion of open class words, it was increased by STN DBS. Thus, VIM DBS favors the use of relatively common words in spontaneous language, compatible with the idea of lexical simplification under thalamic stimulation. The absence or even partial reversal of these effects in patients receiving STN DBS is of interest with respect to biolinguistic concepts suggesting dichotomous thalamic vs. basal ganglia roles in language processing.