Cargando…
Extending the I-squared statistic to describe treatment effect heterogeneity in cluster, multi-centre randomized trials and individual patient data meta-analysis
Treatment effect heterogeneity is commonly investigated in meta-analyses to identify if treatment effects vary across studies. When conducting an aggregate level data meta-analysis it is common to describe the magnitude of any treatment effect heterogeneity using the I-squared statistic, which is an...
Autores principales: | Hemming, Karla, Hughes, James P, McKenzie, Joanne E, Forbes, Andrew B |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8173367/ https://www.ncbi.nlm.nih.gov/pubmed/32955403 http://dx.doi.org/10.1177/0962280220948550 |
Ejemplares similares
-
Modeling clustering and treatment effect heterogeneity in parallel and stepped‐wedge cluster randomized trials
por: Hemming, Karla, et al.
Publicado: (2018) -
Understanding the cluster randomised crossover design: a graphical illustraton of the components of variation and a sample size tutorial
por: Arnup, Sarah J., et al.
Publicado: (2017) -
Analysis of cluster randomised stepped wedge trials with repeated cross-sectional samples
por: Hemming, Karla, et al.
Publicado: (2017) -
Statistical efficiency and optimal design for stepped cluster studies under linear mixed effects models
por: Girling, Alan J., et al.
Publicado: (2016) -
Ethical implications of excessive cluster sizes in cluster randomised trials
por: Hemming, Karla, et al.
Publicado: (2018)