Cargando…
Active training of physics-informed neural networks to aggregate and interpolate parametric solutions to the Navier-Stokes equations
The goal of this work is to train a neural network which approximates solutions to the Navier-Stokes equations across a region of parameter space, in which the parameters define physical properties such as domain shape and boundary conditions. The contributions of this work are threefold: 1. To demo...
Autores principales: | Arthurs, Christopher J., King, Andrew P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8174474/ https://www.ncbi.nlm.nih.gov/pubmed/34345054 http://dx.doi.org/10.1016/j.jcp.2021.110364 |
Ejemplares similares
-
Navier-stokes equations
por: Constantin, Peter, et al.
Publicado: (2020) -
Numerical solution of the incompressible Navier-Stokes equations
por: Quartapelle, L
Publicado: (1993) -
No Existence and Smoothness of Solution of the Navier-Stokes Equation
por: Dou, Hua-Shu
Publicado: (2022) -
Lectures on Navier-Stokes equations
por: Tsai, Tai-Peng
Publicado: (2018) -
Handbook on Navier-Stokes equations
por: Campos, Denise
Publicado: (2016)