Cargando…
Quantifying Online News Media Coverage of the COVID-19 Pandemic: Text Mining Study and Resource
BACKGROUND: Before the advent of an effective vaccine, nonpharmaceutical interventions, such as mask-wearing, social distancing, and lockdowns, have been the primary measures to combat the COVID-19 pandemic. Such measures are highly effective when there is high population-wide adherence, which requi...
Autores principales: | Krawczyk, Konrad, Chelkowski, Tadeusz, Laydon, Daniel J, Mishra, Swapnil, Xifara, Denise, Gibert, Benjamin, Flaxman, Seth, Mellan, Thomas, Schwämmle, Veit, Röttger, Richard, Hadsund, Johannes T, Bhatt, Samir |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8174556/ https://www.ncbi.nlm.nih.gov/pubmed/33900934 http://dx.doi.org/10.2196/28253 |
Ejemplares similares
-
Correction: Quantifying Online News Media Coverage of the COVID-19 Pandemic: Text Mining Study and Resource
por: Krawczyk, Konrad, et al.
Publicado: (2021) -
Quantifying Changes in Vaccine Coverage in Mainstream Media as a Result of the COVID-19 Outbreak: Text Mining Study
por: Christensen, Bente, et al.
Publicado: (2022) -
Variability analysis of LC-MS experimental factors and their impact on machine learning
por: Rehfeldt, Tobias Greisager, et al.
Publicado: (2023) -
Application of referenced thermodynamic integration to Bayesian model selection
por: Hawryluk, Iwona, et al.
Publicado: (2023) -
[Formula: see text] VAE: a stochastic process prior for Bayesian deep learning with MCMC
por: Mishra, Swapnil, et al.
Publicado: (2022)