Cargando…
Application of machine learning approaches to administrative claims data to predict clinical outcomes in medical and surgical patient populations
OBJECTIVE: This study aimed to develop and validate a claims-based, machine learning algorithm to predict clinical outcomes across both medical and surgical patient populations. METHODS: This retrospective, observational cohort study, used a random 5% sample of 770,777 fee-for-service Medicare benef...
Autores principales: | MacKay, Emily J., Stubna, Michael D., Chivers, Corey, Draugelis, Michael E., Hanson, William J., Desai, Nimesh D., Groeneveld, Peter W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8174683/ https://www.ncbi.nlm.nih.gov/pubmed/34081720 http://dx.doi.org/10.1371/journal.pone.0252585 |
Ejemplares similares
-
Guiding Efficient, Effective, and Patient-Oriented Electrolyte Replacement in Critical Care: An Artificial Intelligence Reinforcement Learning Approach
por: Prasad, Niranjani, et al.
Publicado: (2022) -
Association of Intraoperative Transesophageal Echocardiography and Clinical Outcomes After Open Cardiac Valve or Proximal Aortic Surgery
por: MacKay, Emily J., et al.
Publicado: (2022) -
Machine Learning Approaches to Predict 6-Month Mortality Among Patients With Cancer
por: Parikh, Ravi B., et al.
Publicado: (2019) -
Sparse multi-output Gaussian processes for online medical time series prediction
por: Cheng, Li-Fang, et al.
Publicado: (2020) -
Comparison of Machine Learning Methods With Traditional Models for Use of Administrative Claims With Electronic Medical Records to Predict Heart Failure Outcomes
por: Desai, Rishi J., et al.
Publicado: (2020)