Cargando…
A combined approach for modeling multi-echelon multi-period decentralized supply chain
In this paper, a multi-echelon, multi-period, decentralized supply chain (SC) with a single manufacturer, single distributor and single retailer is considered. For this setting, a two-phase planning approach combining centralized and decentralized decision-making processes is proposed, in which the...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8174765/ https://www.ncbi.nlm.nih.gov/pubmed/34103779 http://dx.doi.org/10.1007/s10479-021-04121-0 |
Sumario: | In this paper, a multi-echelon, multi-period, decentralized supply chain (SC) with a single manufacturer, single distributor and single retailer is considered. For this setting, a two-phase planning approach combining centralized and decentralized decision-making processes is proposed, in which the first-phase planning is a coordinated centralized controlled, and the second-phase planning is viewed as independent decentralized decision-making for individual entities. This research focuses on the independence and equally powerful behavior of the individual entities with the aim of achieving the maximum profit for each stage. A mathematical model for total SC coordination as a first-phase planning problem and separate ones for each of the independent members with their individual objectives and constraints as second-phase planning problems are developed. We introduce a new solution approach using a goal programming technique in which a target or goal value is set for each independent decision problem to ensure that it obtains a near value for its individual optimum profit, with a numerical analysis presented to explain the results. Moreover, the proposed two-phase model is compared with a single-phase approach in which all stages are considered dependent on each other as parts of a centralized SC. The results prove that the combined two-phase planning method for a decentralized SC network is more realistic and effective than a traditional single-phase one. |
---|