Cargando…

Ligand Control of (59)Co Nuclear Spin Relaxation Thermometry

Studying the correlation between temperature-driven molecular structure and nuclear spin dynamics is essential to understanding fundamental design principles for thermometric nuclear magnetic resonance spin-based probes. Herein, we study the impact of progressively encapsulating ligands on temperatu...

Descripción completa

Detalles Bibliográficos
Autores principales: Ozvat, Tyler M., Johnson, Spencer H., Rappé, Anthony K., Zadrozny, Joseph M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8174815/
https://www.ncbi.nlm.nih.gov/pubmed/34095291
http://dx.doi.org/10.3390/magnetochemistry6040058
_version_ 1783702973936828416
author Ozvat, Tyler M.
Johnson, Spencer H.
Rappé, Anthony K.
Zadrozny, Joseph M.
author_facet Ozvat, Tyler M.
Johnson, Spencer H.
Rappé, Anthony K.
Zadrozny, Joseph M.
author_sort Ozvat, Tyler M.
collection PubMed
description Studying the correlation between temperature-driven molecular structure and nuclear spin dynamics is essential to understanding fundamental design principles for thermometric nuclear magnetic resonance spin-based probes. Herein, we study the impact of progressively encapsulating ligands on temperature-dependent (59)Co T(1) (spin–lattice) and T(2) (spin–spin) relaxation times in a set of Co(III) complexes: K(3)[Co(CN)(6)] (1); [Co(NH(3))(6)]Cl(3) (2); [Co(en)(3)]Cl(3) (3), en = ethylenediamine); [Co(tn)(3)]Cl(3) (4), tn = trimethylenediamine); [Co(tame)(2)]Cl(3) (5), tame = triaminomethylethane); and [Co(dinosar)]Cl(3) (6), dinosar = dinitrosarcophagine). Measurements indicate that (59)Co T(1) and T(2) increase with temperature for 1–6 between 10 and 60 °C, with the greatest ΔT(1)/ΔT and ΔT(2)/ΔT temperature sensitivities found for 4 and 3, 5.3(3)%T(1)/°C and 6(1)%T(2)/°C, respectively. Temperature-dependent T(2)* (dephasing time) analyses were also made, revealing the highest ΔT(2)*/ΔT sensitivities in structures of greatest encapsulation, as high as 4.64%T(2)*/°C for 6. Calculations of the temperature-dependent quadrupolar coupling parameter, Δe(2)qQ/ΔT, enable insight into the origins of the relative ΔT(1)/ΔT values. These results suggest tunable quadrupolar coupling interactions as novel design principles for enhancing temperature sensitivity in nuclear spin-based probes.
format Online
Article
Text
id pubmed-8174815
institution National Center for Biotechnology Information
language English
publishDate 2020
record_format MEDLINE/PubMed
spelling pubmed-81748152021-06-03 Ligand Control of (59)Co Nuclear Spin Relaxation Thermometry Ozvat, Tyler M. Johnson, Spencer H. Rappé, Anthony K. Zadrozny, Joseph M. Magnetochemistry Article Studying the correlation between temperature-driven molecular structure and nuclear spin dynamics is essential to understanding fundamental design principles for thermometric nuclear magnetic resonance spin-based probes. Herein, we study the impact of progressively encapsulating ligands on temperature-dependent (59)Co T(1) (spin–lattice) and T(2) (spin–spin) relaxation times in a set of Co(III) complexes: K(3)[Co(CN)(6)] (1); [Co(NH(3))(6)]Cl(3) (2); [Co(en)(3)]Cl(3) (3), en = ethylenediamine); [Co(tn)(3)]Cl(3) (4), tn = trimethylenediamine); [Co(tame)(2)]Cl(3) (5), tame = triaminomethylethane); and [Co(dinosar)]Cl(3) (6), dinosar = dinitrosarcophagine). Measurements indicate that (59)Co T(1) and T(2) increase with temperature for 1–6 between 10 and 60 °C, with the greatest ΔT(1)/ΔT and ΔT(2)/ΔT temperature sensitivities found for 4 and 3, 5.3(3)%T(1)/°C and 6(1)%T(2)/°C, respectively. Temperature-dependent T(2)* (dephasing time) analyses were also made, revealing the highest ΔT(2)*/ΔT sensitivities in structures of greatest encapsulation, as high as 4.64%T(2)*/°C for 6. Calculations of the temperature-dependent quadrupolar coupling parameter, Δe(2)qQ/ΔT, enable insight into the origins of the relative ΔT(1)/ΔT values. These results suggest tunable quadrupolar coupling interactions as novel design principles for enhancing temperature sensitivity in nuclear spin-based probes. 2020-11-12 2020-12 /pmc/articles/PMC8174815/ /pubmed/34095291 http://dx.doi.org/10.3390/magnetochemistry6040058 Text en https://creativecommons.org/licenses/by/4.0/This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ).
spellingShingle Article
Ozvat, Tyler M.
Johnson, Spencer H.
Rappé, Anthony K.
Zadrozny, Joseph M.
Ligand Control of (59)Co Nuclear Spin Relaxation Thermometry
title Ligand Control of (59)Co Nuclear Spin Relaxation Thermometry
title_full Ligand Control of (59)Co Nuclear Spin Relaxation Thermometry
title_fullStr Ligand Control of (59)Co Nuclear Spin Relaxation Thermometry
title_full_unstemmed Ligand Control of (59)Co Nuclear Spin Relaxation Thermometry
title_short Ligand Control of (59)Co Nuclear Spin Relaxation Thermometry
title_sort ligand control of (59)co nuclear spin relaxation thermometry
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8174815/
https://www.ncbi.nlm.nih.gov/pubmed/34095291
http://dx.doi.org/10.3390/magnetochemistry6040058
work_keys_str_mv AT ozvattylerm ligandcontrolof59conuclearspinrelaxationthermometry
AT johnsonspencerh ligandcontrolof59conuclearspinrelaxationthermometry
AT rappeanthonyk ligandcontrolof59conuclearspinrelaxationthermometry
AT zadroznyjosephm ligandcontrolof59conuclearspinrelaxationthermometry