Cargando…
Data Analysis and Forecasting of the COVID-19 Spread: A Comparison of Recurrent Neural Networks and Time Series Models
To understand and approach the spread of the SARS-CoV-2 epidemic, machine learning offers fundamental tools. This study presents the use of machine learning techniques for projecting COVID-19 infections and deaths in Mexico. The research has three main objectives: first, to identify which function a...
Autores principales: | Gomez-Cravioto, Daniela A., Diaz-Ramos, Ramon E., Cantu-Ortiz, Francisco J., Ceballos, Hector G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8175062/ https://www.ncbi.nlm.nih.gov/pubmed/34104256 http://dx.doi.org/10.1007/s12559-021-09885-y |
Ejemplares similares
-
Comparison of Recurrent Neural Networks for Wind Power Forecasting
por: López, Erick, et al.
Publicado: (2020) -
Neural Networks for Financial Time Series Forecasting
por: Sako, Kady, et al.
Publicado: (2022) -
Recurrent neural network modeling of multivariate time series and its application in temperature forecasting
por: Nketiah, Edward Appau, et al.
Publicado: (2023) -
Spatiotemporal Transformer Neural Network for Time-Series Forecasting
por: You, Yujie, et al.
Publicado: (2022) -
International Conference on Time Series and Forecasting
por: Valenzuela, Olga, et al.
Publicado: (2020)