Cargando…
Synaptic learning rules for sequence learning
Remembering the temporal order of a sequence of events is a task easily performed by humans in everyday life, but the underlying neuronal mechanisms are unclear. This problem is particularly intriguing as human behavior often proceeds on a time scale of seconds, which is in stark contrast to the muc...
Autores principales: | Reifenstein, Eric Torsten, Bin Khalid, Ikhwan, Kempter, Richard |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8175084/ https://www.ncbi.nlm.nih.gov/pubmed/33860763 http://dx.doi.org/10.7554/eLife.67171 |
Ejemplares similares
-
Biologically plausible local synaptic learning rules robustly implement deep supervised learning
por: Konishi, Masataka, et al.
Publicado: (2023) -
A Novel Learning Rule for Long-Term Plasticity of Short-Term Synaptic Plasticity Enhances Temporal Processing
por: Carvalho, Tiago P., et al.
Publicado: (2011) -
Learning precise spatiotemporal sequences via biophysically realistic learning rules in a modular, spiking network
por: Cone, Ian, et al.
Publicado: (2021) -
Learning accurate path integration in ring attractor models of the head direction system
por: Vafidis, Pantelis, et al.
Publicado: (2022) -
Movement Dependence and Layer Specificity of Entorhinal Phase Precession in Two-Dimensional Environments
por: Reifenstein, Eric, et al.
Publicado: (2014)