Cargando…
A subcellular map of the human kinome
The human kinome comprises 538 kinases playing essential functions by catalyzing protein phosphorylation. Annotation of subcellular distribution of the kinome greatly facilitates investigation of normal and disease mechanisms. Here, we present Kinome Atlas (KA), an image-based map of the kinome anno...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8175086/ https://www.ncbi.nlm.nih.gov/pubmed/33988507 http://dx.doi.org/10.7554/eLife.64943 |
_version_ | 1783702985950363648 |
---|---|
author | Zhang, Haitao Cao, Xiaolei Tang, Mei Zhong, Guoxuan Si, Yuan Li, Haidong Zhu, Feifeng Liao, Qinghua Li, Liuju Zhao, Jianhui Feng, Jia Li, Shuaifeng Wang, Chenliang Kaulich, Manuel Wang, Fangwei Chen, Liangyi Li, Li Xia, Zongping Liang, Tingbo Lu, Huasong Feng, Xin-Hua Zhao, Bin |
author_facet | Zhang, Haitao Cao, Xiaolei Tang, Mei Zhong, Guoxuan Si, Yuan Li, Haidong Zhu, Feifeng Liao, Qinghua Li, Liuju Zhao, Jianhui Feng, Jia Li, Shuaifeng Wang, Chenliang Kaulich, Manuel Wang, Fangwei Chen, Liangyi Li, Li Xia, Zongping Liang, Tingbo Lu, Huasong Feng, Xin-Hua Zhao, Bin |
author_sort | Zhang, Haitao |
collection | PubMed |
description | The human kinome comprises 538 kinases playing essential functions by catalyzing protein phosphorylation. Annotation of subcellular distribution of the kinome greatly facilitates investigation of normal and disease mechanisms. Here, we present Kinome Atlas (KA), an image-based map of the kinome annotated to 10 cellular compartments. 456 epitope-tagged kinases, representing 85% of the human kinome, were expressed in HeLa cells and imaged by immunofluorescent microscopy under a similar condition. KA revealed kinase family-enriched subcellular localizations and discovered a collection of new kinase localizations at mitochondria, plasma membrane, extracellular space, and other structures. Furthermore, KA demonstrated the role of liquid-liquid phase separation in formation of kinase condensates. Identification of MOK as a mitochondrial kinase revealed its function in cristae dynamics, respiration, and oxidative stress response. Although limited by possible mislocalization due to overexpression or epitope tagging, this subcellular map of the kinome can be used to refine regulatory mechanisms involving protein phosphorylation. |
format | Online Article Text |
id | pubmed-8175086 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-81750862021-06-04 A subcellular map of the human kinome Zhang, Haitao Cao, Xiaolei Tang, Mei Zhong, Guoxuan Si, Yuan Li, Haidong Zhu, Feifeng Liao, Qinghua Li, Liuju Zhao, Jianhui Feng, Jia Li, Shuaifeng Wang, Chenliang Kaulich, Manuel Wang, Fangwei Chen, Liangyi Li, Li Xia, Zongping Liang, Tingbo Lu, Huasong Feng, Xin-Hua Zhao, Bin eLife Biochemistry and Chemical Biology The human kinome comprises 538 kinases playing essential functions by catalyzing protein phosphorylation. Annotation of subcellular distribution of the kinome greatly facilitates investigation of normal and disease mechanisms. Here, we present Kinome Atlas (KA), an image-based map of the kinome annotated to 10 cellular compartments. 456 epitope-tagged kinases, representing 85% of the human kinome, were expressed in HeLa cells and imaged by immunofluorescent microscopy under a similar condition. KA revealed kinase family-enriched subcellular localizations and discovered a collection of new kinase localizations at mitochondria, plasma membrane, extracellular space, and other structures. Furthermore, KA demonstrated the role of liquid-liquid phase separation in formation of kinase condensates. Identification of MOK as a mitochondrial kinase revealed its function in cristae dynamics, respiration, and oxidative stress response. Although limited by possible mislocalization due to overexpression or epitope tagging, this subcellular map of the kinome can be used to refine regulatory mechanisms involving protein phosphorylation. eLife Sciences Publications, Ltd 2021-05-14 /pmc/articles/PMC8175086/ /pubmed/33988507 http://dx.doi.org/10.7554/eLife.64943 Text en © 2021, Zhang et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Biochemistry and Chemical Biology Zhang, Haitao Cao, Xiaolei Tang, Mei Zhong, Guoxuan Si, Yuan Li, Haidong Zhu, Feifeng Liao, Qinghua Li, Liuju Zhao, Jianhui Feng, Jia Li, Shuaifeng Wang, Chenliang Kaulich, Manuel Wang, Fangwei Chen, Liangyi Li, Li Xia, Zongping Liang, Tingbo Lu, Huasong Feng, Xin-Hua Zhao, Bin A subcellular map of the human kinome |
title | A subcellular map of the human kinome |
title_full | A subcellular map of the human kinome |
title_fullStr | A subcellular map of the human kinome |
title_full_unstemmed | A subcellular map of the human kinome |
title_short | A subcellular map of the human kinome |
title_sort | subcellular map of the human kinome |
topic | Biochemistry and Chemical Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8175086/ https://www.ncbi.nlm.nih.gov/pubmed/33988507 http://dx.doi.org/10.7554/eLife.64943 |
work_keys_str_mv | AT zhanghaitao asubcellularmapofthehumankinome AT caoxiaolei asubcellularmapofthehumankinome AT tangmei asubcellularmapofthehumankinome AT zhongguoxuan asubcellularmapofthehumankinome AT siyuan asubcellularmapofthehumankinome AT lihaidong asubcellularmapofthehumankinome AT zhufeifeng asubcellularmapofthehumankinome AT liaoqinghua asubcellularmapofthehumankinome AT liliuju asubcellularmapofthehumankinome AT zhaojianhui asubcellularmapofthehumankinome AT fengjia asubcellularmapofthehumankinome AT lishuaifeng asubcellularmapofthehumankinome AT wangchenliang asubcellularmapofthehumankinome AT kaulichmanuel asubcellularmapofthehumankinome AT wangfangwei asubcellularmapofthehumankinome AT chenliangyi asubcellularmapofthehumankinome AT lili asubcellularmapofthehumankinome AT xiazongping asubcellularmapofthehumankinome AT liangtingbo asubcellularmapofthehumankinome AT luhuasong asubcellularmapofthehumankinome AT fengxinhua asubcellularmapofthehumankinome AT zhaobin asubcellularmapofthehumankinome AT zhanghaitao subcellularmapofthehumankinome AT caoxiaolei subcellularmapofthehumankinome AT tangmei subcellularmapofthehumankinome AT zhongguoxuan subcellularmapofthehumankinome AT siyuan subcellularmapofthehumankinome AT lihaidong subcellularmapofthehumankinome AT zhufeifeng subcellularmapofthehumankinome AT liaoqinghua subcellularmapofthehumankinome AT liliuju subcellularmapofthehumankinome AT zhaojianhui subcellularmapofthehumankinome AT fengjia subcellularmapofthehumankinome AT lishuaifeng subcellularmapofthehumankinome AT wangchenliang subcellularmapofthehumankinome AT kaulichmanuel subcellularmapofthehumankinome AT wangfangwei subcellularmapofthehumankinome AT chenliangyi subcellularmapofthehumankinome AT lili subcellularmapofthehumankinome AT xiazongping subcellularmapofthehumankinome AT liangtingbo subcellularmapofthehumankinome AT luhuasong subcellularmapofthehumankinome AT fengxinhua subcellularmapofthehumankinome AT zhaobin subcellularmapofthehumankinome |