Cargando…
Robust diagnostic classification via Q-learning
Machine learning (ML) models have demonstrated the power of utilizing clinical instruments to provide tools for domain experts in gaining additional insights toward complex clinical diagnoses. In this context these tools desire two additional properties: interpretability, being able to audit and und...
Autores principales: | Ardulov, Victor, Martinez, Victor R., Somandepalli, Krishna, Zheng, Shuting, Salzman, Emma, Lord, Catherine, Bishop, Somer, Narayanan, Shrikanth |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8175431/ https://www.ncbi.nlm.nih.gov/pubmed/34083579 http://dx.doi.org/10.1038/s41598-021-90000-4 |
Ejemplares similares
-
Boys don’t cry (or kiss or dance): A computational linguistic lens into gendered actions in film
por: Martinez, Victor R., et al.
Publicado: (2022) -
Representation of professions in entertainment media: Insights into frequency and sentiment trends through computational text analysis
por: Baruah, Sabyasachee, et al.
Publicado: (2022) -
State of the Field: Differentiating Intellectual Disability From Autism Spectrum Disorder
por: Thurm, Audrey, et al.
Publicado: (2019) -
Interpersonal synchrony across vocal and lexical modalities in interactions involving children with autism spectrum disorder
por: Lahiri, Rimita, et al.
Publicado: (2022) -
Parent-reported and clinician-observed autism spectrum disorder (ASD) symptoms in children with attention deficit/hyperactivity disorder (ADHD): implications for practice under DSM-5
por: Grzadzinski, Rebecca, et al.
Publicado: (2016)