Cargando…
Gaussian Process Autoregression for Joint Angle Prediction Based on sEMG Signals
There is uncertainty in the neuromusculoskeletal system, and deterministic models cannot describe this significant presence of uncertainty, affecting the accuracy of model predictions. In this paper, a knee joint angle prediction model based on surface electromyography (sEMG) signals is proposed. To...
Autores principales: | Liang, Jie, Shi, Zhengyi, Zhu, Feifei, Chen, Wenxin, Chen, Xin, Li, Yurong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8175857/ https://www.ncbi.nlm.nih.gov/pubmed/34095080 http://dx.doi.org/10.3389/fpubh.2021.685596 |
Ejemplares similares
-
A Multi-DoF Prosthetic Hand Finger Joint Controller for Wearable sEMG Sensors by Nonlinear Autoregressive Exogenous Model
por: Gao, Zhaolong, et al.
Publicado: (2021) -
Compound motion decoding based on sEMG consisting of gestures, wrist angles, and strength
por: Zhang, Xiaodong, et al.
Publicado: (2022) -
sEMG dataset of routine activities
por: Khan, Asad Mansoor, et al.
Publicado: (2020) -
Prediction of the performance of artificial neural networks in mapping sEMG to finger joint angles via signal pre-investigation techniques
por: Batayneh, Wafa, et al.
Publicado: (2020) -
sEMG feature evaluation for identification of elbow angle resolution in graded arm movement
por: Castro, Maria Claudia F, et al.
Publicado: (2014)