Cargando…
Evaluation of Three Machine Learning Algorithms for the Automatic Classification of EMG Patterns in Gait Disorders
Gait disorders are common in neurodegenerative diseases and distinguishing between seemingly similar kinematic patterns associated with different pathological entities is a challenge even for the experienced clinician. Ultimately, muscle activity underlies the generation of kinematic patterns. There...
Autores principales: | Fricke, Christopher, Alizadeh, Jalal, Zakhary, Nahrin, Woost, Timo B., Bogdan, Martin, Classen, Joseph |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8175858/ https://www.ncbi.nlm.nih.gov/pubmed/34093413 http://dx.doi.org/10.3389/fneur.2021.666458 |
Ejemplares similares
-
Support Vector Machine Classifiers Show High Generalizability in Automatic Fall Detection in Older Adults
por: Alizadeh, Jalal, et al.
Publicado: (2021) -
Dual-Site Transcranial Magnetic Stimulation for the Treatment of Parkinson's Disease
por: Fricke, Christopher, et al.
Publicado: (2019) -
Barriers to sEMG Assessment During Overground Robot-Assisted Gait Training in Subacute Stroke Patients
por: Goffredo, Michela, et al.
Publicado: (2020) -
Classification of Aggressive Behaviors Based on sEMG Feature Extraction and Machine Learning Algorithm
por: Kim, Youngjun, et al.
Publicado: (2020) -
Diagnostic Performance of MRI Volumetry in Epilepsy Patients With Hippocampal Sclerosis Supported Through a Random Forest Automatic Classification Algorithm
por: Princich, Juan Pablo, et al.
Publicado: (2021)