Cargando…

Floodwater Depth Causes Different Physiological Responses During Post-flooding in Willows

Willows are widely planted in areas under risk of flooding. The physiological responses of willows to flooding have been characterized, but little is known about their responses during the post-flooding period. After the end of the stress episode, plants may modify some traits to compensate for the...

Descripción completa

Detalles Bibliográficos
Autores principales: Mozo, Irina, Rodríguez, María E., Monteoliva, Silvia, Luquez, Virginia M. C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8176222/
https://www.ncbi.nlm.nih.gov/pubmed/34093599
http://dx.doi.org/10.3389/fpls.2021.575090
_version_ 1783703215445901312
author Mozo, Irina
Rodríguez, María E.
Monteoliva, Silvia
Luquez, Virginia M. C.
author_facet Mozo, Irina
Rodríguez, María E.
Monteoliva, Silvia
Luquez, Virginia M. C.
author_sort Mozo, Irina
collection PubMed
description Willows are widely planted in areas under risk of flooding. The physiological responses of willows to flooding have been characterized, but little is known about their responses during the post-flooding period. After the end of the stress episode, plants may modify some traits to compensate for the biomass loss during flooding. The aim of this work was to analyze the post-flooding physiological responses of willow under two different depths of stagnant floodwater. Cuttings of Salix matsudana NZ692 clone were planted in pots in a greenhouse. The experiment started when the plants were 2 months old with the following treatments: Control plants (watered to field capacity); plants partially flooded 10 cm above soil level (F10) and plants partially flooded 40 cm above soil level (F40). The flooding episode lasted 35 days and was followed by a recovery period of 28 days (post-flooding period). After the flooding period, height, diameter and total biomass were higher in F10, while F40 plants showed an increase in plant adventitious root production and leaf nitrogen content. During the post-flooding period, the photosynthetic rate, nitrogen, chlorophyll and soluble sugar contents were significantly higher in leaves of F40 than in Control and F10 treatments. Stomatal conductance and specific leaf area were higher in the previously flooded plants compared to Control treatment. Plants from F10 treatments showed a higher growth in height, root-to-shoot ratio, and carbon isotope discrimination than F40, while the opposite occurred for growth in diameter, vessel size and leaf area. We conclude that depth of floodwater not only causes different responses during flooding, but that its effects are also present in the post-flooding recovery period, affecting the growth and physiology of willows once the stress episode has ended. Even when flooding impacted growth negatively in F40, in the post-flooding period these plants compensated by increasing the photosynthetic rate, plant leaf area and xylem vessel size. Willows endurance to flooding is the result of both responses during flooding, and plastic responses during post-flooding.
format Online
Article
Text
id pubmed-8176222
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-81762222021-06-05 Floodwater Depth Causes Different Physiological Responses During Post-flooding in Willows Mozo, Irina Rodríguez, María E. Monteoliva, Silvia Luquez, Virginia M. C. Front Plant Sci Plant Science Willows are widely planted in areas under risk of flooding. The physiological responses of willows to flooding have been characterized, but little is known about their responses during the post-flooding period. After the end of the stress episode, plants may modify some traits to compensate for the biomass loss during flooding. The aim of this work was to analyze the post-flooding physiological responses of willow under two different depths of stagnant floodwater. Cuttings of Salix matsudana NZ692 clone were planted in pots in a greenhouse. The experiment started when the plants were 2 months old with the following treatments: Control plants (watered to field capacity); plants partially flooded 10 cm above soil level (F10) and plants partially flooded 40 cm above soil level (F40). The flooding episode lasted 35 days and was followed by a recovery period of 28 days (post-flooding period). After the flooding period, height, diameter and total biomass were higher in F10, while F40 plants showed an increase in plant adventitious root production and leaf nitrogen content. During the post-flooding period, the photosynthetic rate, nitrogen, chlorophyll and soluble sugar contents were significantly higher in leaves of F40 than in Control and F10 treatments. Stomatal conductance and specific leaf area were higher in the previously flooded plants compared to Control treatment. Plants from F10 treatments showed a higher growth in height, root-to-shoot ratio, and carbon isotope discrimination than F40, while the opposite occurred for growth in diameter, vessel size and leaf area. We conclude that depth of floodwater not only causes different responses during flooding, but that its effects are also present in the post-flooding recovery period, affecting the growth and physiology of willows once the stress episode has ended. Even when flooding impacted growth negatively in F40, in the post-flooding period these plants compensated by increasing the photosynthetic rate, plant leaf area and xylem vessel size. Willows endurance to flooding is the result of both responses during flooding, and plastic responses during post-flooding. Frontiers Media S.A. 2021-05-21 /pmc/articles/PMC8176222/ /pubmed/34093599 http://dx.doi.org/10.3389/fpls.2021.575090 Text en Copyright © 2021 Mozo, Rodríguez, Monteoliva and Luquez. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Plant Science
Mozo, Irina
Rodríguez, María E.
Monteoliva, Silvia
Luquez, Virginia M. C.
Floodwater Depth Causes Different Physiological Responses During Post-flooding in Willows
title Floodwater Depth Causes Different Physiological Responses During Post-flooding in Willows
title_full Floodwater Depth Causes Different Physiological Responses During Post-flooding in Willows
title_fullStr Floodwater Depth Causes Different Physiological Responses During Post-flooding in Willows
title_full_unstemmed Floodwater Depth Causes Different Physiological Responses During Post-flooding in Willows
title_short Floodwater Depth Causes Different Physiological Responses During Post-flooding in Willows
title_sort floodwater depth causes different physiological responses during post-flooding in willows
topic Plant Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8176222/
https://www.ncbi.nlm.nih.gov/pubmed/34093599
http://dx.doi.org/10.3389/fpls.2021.575090
work_keys_str_mv AT mozoirina floodwaterdepthcausesdifferentphysiologicalresponsesduringpostfloodinginwillows
AT rodriguezmariae floodwaterdepthcausesdifferentphysiologicalresponsesduringpostfloodinginwillows
AT monteolivasilvia floodwaterdepthcausesdifferentphysiologicalresponsesduringpostfloodinginwillows
AT luquezvirginiamc floodwaterdepthcausesdifferentphysiologicalresponsesduringpostfloodinginwillows