Cargando…

Hierarchical semantic interaction-based deep hashing network for cross-modal retrieval

Due to the high efficiency of hashing technology and the high abstraction of deep networks, deep hashing has achieved appealing effectiveness and efficiency for large-scale cross-modal retrieval. However, how to efficiently measure the similarity of fine-grained multi-labels for multi-modal data and...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Shubai, Wu, Song, Wang, Li
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8176532/
https://www.ncbi.nlm.nih.gov/pubmed/34141884
http://dx.doi.org/10.7717/peerj-cs.552
Descripción
Sumario:Due to the high efficiency of hashing technology and the high abstraction of deep networks, deep hashing has achieved appealing effectiveness and efficiency for large-scale cross-modal retrieval. However, how to efficiently measure the similarity of fine-grained multi-labels for multi-modal data and thoroughly explore the intermediate layers specific information of networks are still two challenges for high-performance cross-modal hashing retrieval. Thus, in this paper, we propose a novel Hierarchical Semantic Interaction-based Deep Hashing Network (HSIDHN) for large-scale cross-modal retrieval. In the proposed HSIDHN, the multi-scale and fusion operations are first applied to each layer of the network. A Bidirectional Bi-linear Interaction (BBI) policy is then designed to achieve the hierarchical semantic interaction among different layers, such that the capability of hash representations can be enhanced. Moreover, a dual-similarity measurement (“hard” similarity and “soft” similarity) is designed to calculate the semantic similarity of different modality data, aiming to better preserve the semantic correlation of multi-labels. Extensive experiment results on two large-scale public datasets have shown that the performance of our HSIDHN is competitive to state-of-the-art deep cross-modal hashing methods.