Cargando…
Gray level co-occurrence matrix (GLCM) texture based crop classification using low altitude remote sensing platforms
Crop classification in early phenological stages has been a difficult task due to spectrum similarity of different crops. For this purpose, low altitude platforms such as drones have great potential to provide high resolution optical imagery where Machine Learning (ML) applied to classify different...
Autores principales: | Iqbal, Naveed, Mumtaz, Rafia, Shafi, Uferah, Zaidi, Syed Mohammad Hassan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8176538/ https://www.ncbi.nlm.nih.gov/pubmed/34141878 http://dx.doi.org/10.7717/peerj-cs.536 |
Ejemplares similares
-
Wheat Yellow Rust Disease Infection Type Classification Using Texture Features
por: Shafi, Uferah, et al.
Publicado: (2021) -
Precision Agriculture Techniques and Practices: From Considerations to Applications
por: Shafi, Uferah, et al.
Publicado: (2019) -
Super Resolution Generative Adversarial Network (SRGANs) for Wheat Stripe Rust Classification
por: Maqsood, Muhammad Hassan, et al.
Publicado: (2021) -
Obscurant Segmentation in Long Wave Infrared Images Using GLCM Textures
por: Abuhussein, Mohammed, et al.
Publicado: (2022) -
Data extraction of the gray level Co-occurrence matrix (GLCM) Feature on the fingerprints of parents and children in Lombok Island, Indonesia
por: Bakti, Lalu Darmawan, et al.
Publicado: (2021)