Cargando…
Quantifying the impact of non-stationarity in reinforcement learning-based traffic signal control
In reinforcement learning (RL), dealing with non-stationarity is a challenging issue. However, some domains such as traffic optimization are inherently non-stationary. Causes for and effects of this are manifold. In particular, when dealing with traffic signal controls, addressing non-stationarity i...
Autores principales: | Alegre, Lucas N., Bazzan, Ana L.C., da Silva, Bruno C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8176548/ https://www.ncbi.nlm.nih.gov/pubmed/34141896 http://dx.doi.org/10.7717/peerj-cs.575 |
Ejemplares similares
-
Sharing diverse information gets driver agents to learn faster: an application in en route trip building
por: dos Santos, Guilherme Dytz, et al.
Publicado: (2021) -
Machine learning based IoT system for secure traffic management and accident detection in smart cities
por: Balasubramanian, Saravana Balaji, et al.
Publicado: (2023) -
Design of a pollution ontology-based event generation framework for the dynamic application of traffic restrictions
por: Ruiz de Gauna, David Eneko, et al.
Publicado: (2023) -
Multi-step rainfall forecasting using deep learning approach
por: Narejo, Sanam, et al.
Publicado: (2021) -
Identifying multiscale spatio-temporal patterns in human mobility using manifold learning
por: Watson, James R., et al.
Publicado: (2020)