Cargando…
ML-SIM: universal reconstruction of structured illumination microscopy images using transfer learning
Structured illumination microscopy (SIM) has become an important technique for optical super-resolution imaging because it allows a doubling of image resolution at speeds compatible with live-cell imaging. However, the reconstruction of SIM images is often slow, prone to artefacts, and requires mult...
Autores principales: | Christensen, Charles N., Ward, Edward N., Lu, Meng, Lio, Pietro, Kaminski, Clemens F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Optical Society of America
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8176814/ https://www.ncbi.nlm.nih.gov/pubmed/34123499 http://dx.doi.org/10.1364/BOE.414680 |
Ejemplares similares
-
Machine learning assisted interferometric structured illumination microscopy for dynamic biological imaging
por: Ward, Edward N., et al.
Publicado: (2022) -
Method for assessing the spatiotemporal resolution of structured illumination microscopy (SIM)
por: Boualam, Abderrahim, et al.
Publicado: (2021) -
Optical Sectioning and High Resolution in Single-Slice Structured Illumination Microscopy by Thick Slice Blind-SIM Reconstruction
por: Jost, Aurélie, et al.
Publicado: (2015) -
Concepts for structured illumination microscopy with extended axial resolution through mirrored illumination
por: Manton, James D., et al.
Publicado: (2020) -
Measuring Nanoscale Distances by Structured Illumination Microscopy and Image Cross-Correlation Spectroscopy (SIM-ICCS)
por: Cainero, Isotta, et al.
Publicado: (2021)