Cargando…
COVID-19 Detection from X-ray Images using Multi-Kernel-Size Spatial-Channel Attention Network
Novel coronavirus 2019 (COVID-19) has spread rapidly around the world and is threatening the health and lives of people worldwide. Early detection of COVID-19 positive patients and timely isolation of the patients are essential to prevent its spread. Chest X-ray images of COVID-19 patients often sho...
Autores principales: | Fan, Yuqi, Liu, Jiahao, Yao, Ruixuan, Yuan, Xiaohui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8176895/ https://www.ncbi.nlm.nih.gov/pubmed/34103766 http://dx.doi.org/10.1016/j.patcog.2021.108055 |
Ejemplares similares
-
A Data Augmentation Method for Prohibited Item X-Ray Pseudocolor Images in X-Ray Security Inspection Based on Wasserstein Generative Adversarial Network and Spatial-and-Channel Attention Block
por: Liu, Dongming, et al.
Publicado: (2022) -
Residual Spatial and Channel Attention Networks for Single Image Dehazing
por: Jiang, Xin, et al.
Publicado: (2021) -
Channel-spatial attention network for fewshot classification
por: Zhang, Yan, et al.
Publicado: (2019) -
DSKCA-UNet: Dynamic selective kernel channel attention for medical image segmentation
por: Shen, Longfeng, et al.
Publicado: (2023) -
Anticancer Peptide Prediction via Multi-Kernel CNN and Attention Model
por: Wu, Xiujin, et al.
Publicado: (2022)