Cargando…

Identification of 3’-UTR single nucleotide variants and prediction of select protein imbalance in mesial temporal lobe epilepsy patients

The genetic influence in epilepsy, characterized by unprovoked and recurrent seizures, is through variants in genes critical to brain development and function. We have carried out variant calling in Mesial Temporal Lobe Epilepsy (MTLE) patients by mapping the RNA-Seq data available at SRA, NCBI, USA...

Descripción completa

Detalles Bibliográficos
Autores principales: Chaudhuri, Tanusree, Chintalapati, Janaki, Hosur, Madhusoodan Vijayacharya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8177469/
https://www.ncbi.nlm.nih.gov/pubmed/34086756
http://dx.doi.org/10.1371/journal.pone.0252475
_version_ 1783703387613691904
author Chaudhuri, Tanusree
Chintalapati, Janaki
Hosur, Madhusoodan Vijayacharya
author_facet Chaudhuri, Tanusree
Chintalapati, Janaki
Hosur, Madhusoodan Vijayacharya
author_sort Chaudhuri, Tanusree
collection PubMed
description The genetic influence in epilepsy, characterized by unprovoked and recurrent seizures, is through variants in genes critical to brain development and function. We have carried out variant calling in Mesial Temporal Lobe Epilepsy (MTLE) patients by mapping the RNA-Seq data available at SRA, NCBI, USA onto human genome assembly hg-19. We have identified 1,75,641 SNVs in patient samples. These SNVs are distributed over 14700 genes of which 655 are already known to be associated with epilepsy. Large number of variants occur in the 3’-UTR, which is one of the regions involved in the regulation of protein translation through binding of miRNAs and RNA-binding proteins (RBP). We have focused on studying the structure-function relationship of the 3’-UTR SNVs that are common to at-least 10 of the 35 patient samples. For the first time we find SNVs exclusively in the 3’-UTR of FGF12, FAR1, NAPB, SLC1A3, SLC12A6, GRIN2A, CACNB4 and FBXO28 genes. Structural modelling reveals that the variant 3’-UTR segments possess altered secondary and tertiary structures which could affect mRNA stability and binding of RBPs to form proper ribonucleoprotein (RNP) complexes. Secondly, these SNVs have either created or destroyed miRNA-binding sites, and molecular modeling reveals that, where binding sites are created, the additional miRNAs bind strongly to 3’-UTR of only variant mRNAs. These two factors affect protein production thereby creating an imbalance in the amounts of select proteins in the cell. We suggest that in the absence of missense and nonsense variants, protein-activity imbalances associated with MTLE patients can be caused through 3’-UTR variants in relevant genes by the mechanisms mentioned above. 3’-UTR SNV has already been identified as causative variant in the neurological disorder, Tourette syndrome. Inhibition of these miRNA-mRNA bindings could be a novel way of treating drug-resistant MTLE patients. We also suggest that joint occurrence of these SNVs could serve as markers for MTLE. We find, in the present study, SNV-mediated destruction of miRNA binding site in the 3’-UTR of the gene encoding glutamate receptor subunit, and, interestingly, overexpression of one of this receptor subunit is also associated with Febrile Seizures.
format Online
Article
Text
id pubmed-8177469
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-81774692021-06-07 Identification of 3’-UTR single nucleotide variants and prediction of select protein imbalance in mesial temporal lobe epilepsy patients Chaudhuri, Tanusree Chintalapati, Janaki Hosur, Madhusoodan Vijayacharya PLoS One Research Article The genetic influence in epilepsy, characterized by unprovoked and recurrent seizures, is through variants in genes critical to brain development and function. We have carried out variant calling in Mesial Temporal Lobe Epilepsy (MTLE) patients by mapping the RNA-Seq data available at SRA, NCBI, USA onto human genome assembly hg-19. We have identified 1,75,641 SNVs in patient samples. These SNVs are distributed over 14700 genes of which 655 are already known to be associated with epilepsy. Large number of variants occur in the 3’-UTR, which is one of the regions involved in the regulation of protein translation through binding of miRNAs and RNA-binding proteins (RBP). We have focused on studying the structure-function relationship of the 3’-UTR SNVs that are common to at-least 10 of the 35 patient samples. For the first time we find SNVs exclusively in the 3’-UTR of FGF12, FAR1, NAPB, SLC1A3, SLC12A6, GRIN2A, CACNB4 and FBXO28 genes. Structural modelling reveals that the variant 3’-UTR segments possess altered secondary and tertiary structures which could affect mRNA stability and binding of RBPs to form proper ribonucleoprotein (RNP) complexes. Secondly, these SNVs have either created or destroyed miRNA-binding sites, and molecular modeling reveals that, where binding sites are created, the additional miRNAs bind strongly to 3’-UTR of only variant mRNAs. These two factors affect protein production thereby creating an imbalance in the amounts of select proteins in the cell. We suggest that in the absence of missense and nonsense variants, protein-activity imbalances associated with MTLE patients can be caused through 3’-UTR variants in relevant genes by the mechanisms mentioned above. 3’-UTR SNV has already been identified as causative variant in the neurological disorder, Tourette syndrome. Inhibition of these miRNA-mRNA bindings could be a novel way of treating drug-resistant MTLE patients. We also suggest that joint occurrence of these SNVs could serve as markers for MTLE. We find, in the present study, SNV-mediated destruction of miRNA binding site in the 3’-UTR of the gene encoding glutamate receptor subunit, and, interestingly, overexpression of one of this receptor subunit is also associated with Febrile Seizures. Public Library of Science 2021-06-04 /pmc/articles/PMC8177469/ /pubmed/34086756 http://dx.doi.org/10.1371/journal.pone.0252475 Text en © 2021 Chaudhuri et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Chaudhuri, Tanusree
Chintalapati, Janaki
Hosur, Madhusoodan Vijayacharya
Identification of 3’-UTR single nucleotide variants and prediction of select protein imbalance in mesial temporal lobe epilepsy patients
title Identification of 3’-UTR single nucleotide variants and prediction of select protein imbalance in mesial temporal lobe epilepsy patients
title_full Identification of 3’-UTR single nucleotide variants and prediction of select protein imbalance in mesial temporal lobe epilepsy patients
title_fullStr Identification of 3’-UTR single nucleotide variants and prediction of select protein imbalance in mesial temporal lobe epilepsy patients
title_full_unstemmed Identification of 3’-UTR single nucleotide variants and prediction of select protein imbalance in mesial temporal lobe epilepsy patients
title_short Identification of 3’-UTR single nucleotide variants and prediction of select protein imbalance in mesial temporal lobe epilepsy patients
title_sort identification of 3’-utr single nucleotide variants and prediction of select protein imbalance in mesial temporal lobe epilepsy patients
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8177469/
https://www.ncbi.nlm.nih.gov/pubmed/34086756
http://dx.doi.org/10.1371/journal.pone.0252475
work_keys_str_mv AT chaudhuritanusree identificationof3utrsinglenucleotidevariantsandpredictionofselectproteinimbalanceinmesialtemporallobeepilepsypatients
AT chintalapatijanaki identificationof3utrsinglenucleotidevariantsandpredictionofselectproteinimbalanceinmesialtemporallobeepilepsypatients
AT hosurmadhusoodanvijayacharya identificationof3utrsinglenucleotidevariantsandpredictionofselectproteinimbalanceinmesialtemporallobeepilepsypatients