Cargando…
PIN64 Identifying COVID-19 Patients from Unstructured Notes: Performance of a Commercial Clinical Named Entity Recognition System
Autores principales: | Kumar, V., Rasouliyan, L., Long, S., Rao, M.B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Published by Elsevier Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8177587/ http://dx.doi.org/10.1016/j.jval.2021.04.1252 |
Ejemplares similares
-
PIN59 COVID-19: The Real-World Hospitalized Patient Experience
por: Rasouliyan, L., et al.
Publicado: (2021) -
MLM-based typographical error correction of unstructured medical texts for named entity recognition
por: Lee, Eun Byul, et al.
Publicado: (2022) -
Evaluation of a Concept Mapping Task Using Named Entity Recognition and Normalization in Unstructured Clinical Text
por: Trivedi, Sapna, et al.
Publicado: (2020) -
Revisiting Scrofula: An Entity Not to Forget in Migrants’ Health
por: Neves, Sara, et al.
Publicado: (2023) -
Fournier’s Gangrene: A Rare Infectious Entity in an Adolescent with
Type II Diabetes
por: Sanders, Sara C., et al.
Publicado: (2022)