Cargando…
New fluctuation theorems on Maxwell’s demon
With increasing interest in the control of systems at the nano- and mesoscopic scales, studies have been focused on the limit of the energy dissipation in an open system by refining the concept of the Maxwell’s demon. To uncover the underlying physical principle behind a system controlled by a demon...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8177699/ https://www.ncbi.nlm.nih.gov/pubmed/34088664 http://dx.doi.org/10.1126/sciadv.abf1807 |
Sumario: | With increasing interest in the control of systems at the nano- and mesoscopic scales, studies have been focused on the limit of the energy dissipation in an open system by refining the concept of the Maxwell’s demon. To uncover the underlying physical principle behind a system controlled by a demon, we prove a previously unexplored set of fluctuation theorems. These fluctuation theorems imply that there exists an intrinsic nonequilibrium state of the system, led by the nonnegative demon-induced dissipative information. A consequence of this analysis is that the bounds of both work and heat are tighter than the limits predicted by the Sagawa-Ueda theorem. We also suggest a possible experimental test of these work and heat bounds. |
---|