Cargando…

New fluctuation theorems on Maxwell’s demon

With increasing interest in the control of systems at the nano- and mesoscopic scales, studies have been focused on the limit of the energy dissipation in an open system by refining the concept of the Maxwell’s demon. To uncover the underlying physical principle behind a system controlled by a demon...

Descripción completa

Detalles Bibliográficos
Autores principales: Zeng, Qian, Wang, Jin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8177699/
https://www.ncbi.nlm.nih.gov/pubmed/34088664
http://dx.doi.org/10.1126/sciadv.abf1807
Descripción
Sumario:With increasing interest in the control of systems at the nano- and mesoscopic scales, studies have been focused on the limit of the energy dissipation in an open system by refining the concept of the Maxwell’s demon. To uncover the underlying physical principle behind a system controlled by a demon, we prove a previously unexplored set of fluctuation theorems. These fluctuation theorems imply that there exists an intrinsic nonequilibrium state of the system, led by the nonnegative demon-induced dissipative information. A consequence of this analysis is that the bounds of both work and heat are tighter than the limits predicted by the Sagawa-Ueda theorem. We also suggest a possible experimental test of these work and heat bounds.