Cargando…

Tracking interfacial single-molecule pH and binding dynamics via vibrational spectroscopy

Understanding single-molecule chemical dynamics of surface ligands is of critical importance to reveal their individual pathways and, hence, roles in catalysis, which ensemble measurements cannot see. Here, we use a cascaded nano-optics approach that provides sufficient enhancement to enable direct...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Junyang, Grys, David-Benjamin, Griffiths, Jack, de Nijs, Bart, Kamp, Marlous, Lin, Qianqi, Baumberg, Jeremy J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8177700/
https://www.ncbi.nlm.nih.gov/pubmed/34088670
http://dx.doi.org/10.1126/sciadv.abg1790
_version_ 1783703437912834048
author Huang, Junyang
Grys, David-Benjamin
Griffiths, Jack
de Nijs, Bart
Kamp, Marlous
Lin, Qianqi
Baumberg, Jeremy J.
author_facet Huang, Junyang
Grys, David-Benjamin
Griffiths, Jack
de Nijs, Bart
Kamp, Marlous
Lin, Qianqi
Baumberg, Jeremy J.
author_sort Huang, Junyang
collection PubMed
description Understanding single-molecule chemical dynamics of surface ligands is of critical importance to reveal their individual pathways and, hence, roles in catalysis, which ensemble measurements cannot see. Here, we use a cascaded nano-optics approach that provides sufficient enhancement to enable direct tracking of chemical trajectories of single surface-bound molecules via vibrational spectroscopy. Atomic protrusions are laser-induced within plasmonic nanojunctions to concentrate light to atomic length scales, optically isolating individual molecules. By stabilizing these atomic sites, we unveil single-molecule deprotonation and binding dynamics under ambient conditions. High-speed field-enhanced spectroscopy allows us to monitor chemical switching of a single carboxylic group between three discrete states. Combining this with theoretical calculation identifies reversible proton transfer dynamics (yielding effective single-molecule pH) and switching between molecule-metal coordination states, where the exact chemical pathway depends on the intitial protonation state. These findings open new domains to explore interfacial single-molecule mechanisms and optical manipulation of their reaction pathways.
format Online
Article
Text
id pubmed-8177700
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-81777002021-06-11 Tracking interfacial single-molecule pH and binding dynamics via vibrational spectroscopy Huang, Junyang Grys, David-Benjamin Griffiths, Jack de Nijs, Bart Kamp, Marlous Lin, Qianqi Baumberg, Jeremy J. Sci Adv Research Articles Understanding single-molecule chemical dynamics of surface ligands is of critical importance to reveal their individual pathways and, hence, roles in catalysis, which ensemble measurements cannot see. Here, we use a cascaded nano-optics approach that provides sufficient enhancement to enable direct tracking of chemical trajectories of single surface-bound molecules via vibrational spectroscopy. Atomic protrusions are laser-induced within plasmonic nanojunctions to concentrate light to atomic length scales, optically isolating individual molecules. By stabilizing these atomic sites, we unveil single-molecule deprotonation and binding dynamics under ambient conditions. High-speed field-enhanced spectroscopy allows us to monitor chemical switching of a single carboxylic group between three discrete states. Combining this with theoretical calculation identifies reversible proton transfer dynamics (yielding effective single-molecule pH) and switching between molecule-metal coordination states, where the exact chemical pathway depends on the intitial protonation state. These findings open new domains to explore interfacial single-molecule mechanisms and optical manipulation of their reaction pathways. American Association for the Advancement of Science 2021-06-04 /pmc/articles/PMC8177700/ /pubmed/34088670 http://dx.doi.org/10.1126/sciadv.abg1790 Text en Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution license (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Huang, Junyang
Grys, David-Benjamin
Griffiths, Jack
de Nijs, Bart
Kamp, Marlous
Lin, Qianqi
Baumberg, Jeremy J.
Tracking interfacial single-molecule pH and binding dynamics via vibrational spectroscopy
title Tracking interfacial single-molecule pH and binding dynamics via vibrational spectroscopy
title_full Tracking interfacial single-molecule pH and binding dynamics via vibrational spectroscopy
title_fullStr Tracking interfacial single-molecule pH and binding dynamics via vibrational spectroscopy
title_full_unstemmed Tracking interfacial single-molecule pH and binding dynamics via vibrational spectroscopy
title_short Tracking interfacial single-molecule pH and binding dynamics via vibrational spectroscopy
title_sort tracking interfacial single-molecule ph and binding dynamics via vibrational spectroscopy
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8177700/
https://www.ncbi.nlm.nih.gov/pubmed/34088670
http://dx.doi.org/10.1126/sciadv.abg1790
work_keys_str_mv AT huangjunyang trackinginterfacialsinglemoleculephandbindingdynamicsviavibrationalspectroscopy
AT grysdavidbenjamin trackinginterfacialsinglemoleculephandbindingdynamicsviavibrationalspectroscopy
AT griffithsjack trackinginterfacialsinglemoleculephandbindingdynamicsviavibrationalspectroscopy
AT denijsbart trackinginterfacialsinglemoleculephandbindingdynamicsviavibrationalspectroscopy
AT kampmarlous trackinginterfacialsinglemoleculephandbindingdynamicsviavibrationalspectroscopy
AT linqianqi trackinginterfacialsinglemoleculephandbindingdynamicsviavibrationalspectroscopy
AT baumbergjeremyj trackinginterfacialsinglemoleculephandbindingdynamicsviavibrationalspectroscopy