Cargando…
Superconducting materials: Challenges and opportunities for large-scale applications
Superconducting materials hold great potential to bring radical changes for electric power and high-field magnet technology, enabling high-efficiency electric power generation, high-capacity loss-less electric power transmission, small lightweight electrical equipment, high-speed maglev transportati...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8178121/ https://www.ncbi.nlm.nih.gov/pubmed/34136765 http://dx.doi.org/10.1016/j.isci.2021.102541 |
Sumario: | Superconducting materials hold great potential to bring radical changes for electric power and high-field magnet technology, enabling high-efficiency electric power generation, high-capacity loss-less electric power transmission, small lightweight electrical equipment, high-speed maglev transportation, ultra-strong magnetic field generation for high-resolution magnetic resonance imaging (MRI) systems, nuclear magnetic resonance (NMR) systems, future advanced high energy particle accelerators, nuclear fusion reactors, and so on. The performance, economy, and operating parameters (temperatures and magnetic fields) of these applications strongly depend on the electromagnetic and mechanical properties, as well as the manufacturing and material cost of superconductors. This perspective examines the basic properties relevant to practical applications and key issues of wire fabrication for practical superconducting materials, and describes their challenges and current state in practical applications. Finally, future perspectives for their opportunities and development in the applications of superconducting power and magnetic technologies are considered. |
---|