Cargando…
Deep denoising for multi-dimensional synchrotron X-ray tomography without high-quality reference data
Synchrotron X-ray tomography enables the examination of the internal structure of materials at submicron spatial resolution and subsecond temporal resolution. Unavoidable experimental constraints can impose dose and time limits on the measurements, introducing noise in the reconstructed images. Conv...
Autores principales: | Hendriksen, Allard A., Bührer, Minna, Leone, Laura, Merlini, Marco, Vigano, Nicola, Pelt, Daniël M., Marone, Federica, di Michiel, Marco, Batenburg, K. Joost |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8178391/ https://www.ncbi.nlm.nih.gov/pubmed/34088936 http://dx.doi.org/10.1038/s41598-021-91084-8 |
Ejemplares similares
-
Deep learning based classification of dynamic processes in time-resolved X-ray tomographic microscopy
por: Bührer, Minna, et al.
Publicado: (2021) -
Foam-like phantoms for comparing tomography algorithms
por: Pelt, Daniël M., et al.
Publicado: (2022) -
Improving reproducibility in synchrotron tomography using implementation-adapted filters
por: Ganguly, Poulami Somanya, et al.
Publicado: (2021) -
Three-dimensional full-field X-ray orientation microscopy
por: Viganò, Nicola, et al.
Publicado: (2016) -
Real-time reconstruction and visualisation towards dynamic feedback control during time-resolved tomography experiments at TOMCAT
por: Buurlage, Jan-Willem, et al.
Publicado: (2019)