Cargando…
The Production, Efficacy, and Safety of Machine-Generated Bicarbonate Solution for Continuous Venovenous Hemodialysis (CVVHD): The Cleveland Clinic Method
RATIONALE & OBJECTIVE: Since 1994, the Nephrology and Hypertension Department at the Cleveland Clinic has prepared and used bicarbonate-based solution for continuous venovenous hemodialysis (CVVHD) using a standard volumetric hemodialysis machine rather than purchasing from a commercial vendor....
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8178460/ https://www.ncbi.nlm.nih.gov/pubmed/34136781 http://dx.doi.org/10.1016/j.xkme.2021.01.003 |
Sumario: | RATIONALE & OBJECTIVE: Since 1994, the Nephrology and Hypertension Department at the Cleveland Clinic has prepared and used bicarbonate-based solution for continuous venovenous hemodialysis (CVVHD) using a standard volumetric hemodialysis machine rather than purchasing from a commercial vendor. This report describes the process of producing Cleveland Clinic UltraPure Solution (CCUPS), quality and safety monitoring, economic costs, and clinical outcomes. STUDY DESIGN: Retrospective study. SETTING & PARTICIPANTS: CVVHD experience at Cleveland Clinic, focusing on dialysate production, institutional factors, and patients requiring continuous kidney replacement therapy. Production is shown at www.youtube.com/watch?v=WGQgephMEwA. OUTCOMES: Feasibility, safety , and cost. RESULTS: Of 6,426 patients treated between 2011 and 2019 with continuous kidney replacement therapy, 59% were men, 71% were White, 40% had diabetes mellitus, and 74% presented with acute kidney injury. 98% of patients were treated with CVVHD using CCUPS, while the remaining 2% were treated with either continuous venovenous hemofiltration or continuous venovenous hemodiafiltration using commercial solution. The prescribed and delivered effluent doses were 24.8 (IQR) versus 20.7 mL/kg/h (IQR), respectively. CCUPS was as effective in restoring electrolyte and serum bicarbonate levels and reducing phosphate, creatinine, and serum urea nitrogen levels as compared with packaged commercial solution over a 3-day period following initiation of dialysis, with a comparable effluent dose. Among those with acute kidney injury, mortality was similar to that predicted with the 60-day acute kidney injury predicted mortality score (r = 0.997; CI: 0.989-0.999). At our institution, the cost of production for 1 L of CCUPS is $0.67, which is considerably less than the cost of commercially purchased fluid. LIMITATIONS: Observational design without a rigorous control group. CONCLUSIONS: CVVHD using locally generated dialysate is safe and cost-effective. |
---|