Cargando…
Unbiased identification of clinical characteristics predictive of COVID-19 severity
There is currently limited clinical ability to identify COVID-19 patients at risk for severe outcomes. To unbiasedly identify metrics associated with severe outcomes in COVID-19 patients, we conducted a retrospective study of 835 COVID-19 positive patients at a single academic medical center between...
Autores principales: | Akama-Garren, Elliot H., Li, Jonathan X. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8178667/ https://www.ncbi.nlm.nih.gov/pubmed/34089403 http://dx.doi.org/10.1007/s10238-021-00730-y |
Ejemplares similares
-
Unbiased COVID-19 Pandemic With Biased Global Recovery
por: Al-Mallah, Mouaz, et al.
Publicado: (2022) -
Unbiased Identification of Patients with Disorders of Sex Development
por: Hanauer, David A., et al.
Publicado: (2014) -
Are predictions of bovine tuberculosis-infected herds unbiased and precise?
por: Hone, Jim
Publicado: (2023) -
Identification of FDA Approved Antiviral Drugs for COVID-19 Treatment using Unbiased Virtual Screening
por: Greer, Rory, et al.
Publicado: (2021) -
Unbiased pangenome graphs
por: Garrison, Erik, et al.
Publicado: (2022)