Cargando…
DUDA-Net: a double U-shaped dilated attention network for automatic infection area segmentation in COVID-19 lung CT images
PURPOSE: The global health crisis caused by coronavirus disease 2019 (COVID-19) is a common threat facing all humankind. In the process of diagnosing COVID-19 and treating patients, automatic COVID-19 lesion segmentation from computed tomography images helps doctors and patients intuitively understa...
Autores principales: | Xie, Feng, Huang, Zheng, Shi, Zhengjin, Wang, Tianyu, Song, Guoli, Wang, Bolun, Liu, Zihong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8178668/ https://www.ncbi.nlm.nih.gov/pubmed/34089438 http://dx.doi.org/10.1007/s11548-021-02418-w |
Ejemplares similares
-
D2A U-Net: Automatic segmentation of COVID-19 CT slices based on dual attention and hybrid dilated convolution
por: Zhao, Xiangyu, et al.
Publicado: (2021) -
Automatic Semicircular Canal Segmentation of CT Volumes Using Improved 3D U-Net with Attention Mechanism
por: Wu, Hongcheng, et al.
Publicado: (2021) -
Automatic Segmentation of Lumbar Spine MRI Images Based on Improved Attention U-Net
por: Wang, Shuai, et al.
Publicado: (2022) -
Attention-augmented U-Net (AA-U-Net) for semantic segmentation
por: Rajamani, Kumar T., et al.
Publicado: (2022) -
Tooth CT Image Segmentation Method Based on the U-Net Network and Attention Module
por: Tao, Sha, et al.
Publicado: (2022)