Cargando…

An integrative multivariate approach for predicting functional recovery using magnetic resonance imaging parameters in a translational pig ischemic stroke model

Magnetic resonance imaging (MRI) is a clinically relevant, real-time imaging modality that is frequently utilized to assess stroke type and severity. However, specific MRI biomarkers that can be used to predict long-term functional recovery are still a critical need. Consequently, the present study...

Descripción completa

Detalles Bibliográficos
Autores principales: Kaiser, Erin E., Poythress, J.C., Scheulin, Kelly M., Jurgielewicz, Brian J., Lazar, Nicole A., Park, Cheolwoo, Stice, Steven L., Ahn, Jeongyoun, West, Franklin D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer - Medknow 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8178783/
https://www.ncbi.nlm.nih.gov/pubmed/33229718
http://dx.doi.org/10.4103/1673-5374.297079
_version_ 1783703646194630656
author Kaiser, Erin E.
Poythress, J.C.
Scheulin, Kelly M.
Jurgielewicz, Brian J.
Lazar, Nicole A.
Park, Cheolwoo
Stice, Steven L.
Ahn, Jeongyoun
West, Franklin D.
author_facet Kaiser, Erin E.
Poythress, J.C.
Scheulin, Kelly M.
Jurgielewicz, Brian J.
Lazar, Nicole A.
Park, Cheolwoo
Stice, Steven L.
Ahn, Jeongyoun
West, Franklin D.
author_sort Kaiser, Erin E.
collection PubMed
description Magnetic resonance imaging (MRI) is a clinically relevant, real-time imaging modality that is frequently utilized to assess stroke type and severity. However, specific MRI biomarkers that can be used to predict long-term functional recovery are still a critical need. Consequently, the present study sought to examine the prognostic value of commonly utilized MRI parameters to predict functional outcomes in a porcine model of ischemic stroke. Stroke was induced via permanent middle cerebral artery occlusion. At 24 hours post-stroke, MRI analysis revealed focal ischemic lesions, decreased diffusivity, hemispheric swelling, and white matter degradation. Functional deficits including behavioral abnormalities in open field and novel object exploration as well as spatiotemporal gait impairments were observed at 4 weeks post-stroke. Gaussian graphical models identified specific MRI outputs and functional recovery variables, including white matter integrity and gait performance, that exhibited strong conditional dependencies. Canonical correlation analysis revealed a prognostic relationship between lesion volume and white matter integrity and novel object exploration and gait performance. Consequently, these analyses may also have the potential of predicting patient recovery at chronic time points as pigs and humans share many anatomical similarities (e.g., white matter composition) that have proven to be critical in ischemic stroke pathophysiology. The study was approved by the University of Georgia (UGA) Institutional Animal Care and Use Committee (IACUC; Protocol Number: A2014-07-021-Y3-A11 and 2018-01-029-Y1-A5) on November 22, 2017.
format Online
Article
Text
id pubmed-8178783
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Wolters Kluwer - Medknow
record_format MEDLINE/PubMed
spelling pubmed-81787832021-06-22 An integrative multivariate approach for predicting functional recovery using magnetic resonance imaging parameters in a translational pig ischemic stroke model Kaiser, Erin E. Poythress, J.C. Scheulin, Kelly M. Jurgielewicz, Brian J. Lazar, Nicole A. Park, Cheolwoo Stice, Steven L. Ahn, Jeongyoun West, Franklin D. Neural Regen Res Research Article Magnetic resonance imaging (MRI) is a clinically relevant, real-time imaging modality that is frequently utilized to assess stroke type and severity. However, specific MRI biomarkers that can be used to predict long-term functional recovery are still a critical need. Consequently, the present study sought to examine the prognostic value of commonly utilized MRI parameters to predict functional outcomes in a porcine model of ischemic stroke. Stroke was induced via permanent middle cerebral artery occlusion. At 24 hours post-stroke, MRI analysis revealed focal ischemic lesions, decreased diffusivity, hemispheric swelling, and white matter degradation. Functional deficits including behavioral abnormalities in open field and novel object exploration as well as spatiotemporal gait impairments were observed at 4 weeks post-stroke. Gaussian graphical models identified specific MRI outputs and functional recovery variables, including white matter integrity and gait performance, that exhibited strong conditional dependencies. Canonical correlation analysis revealed a prognostic relationship between lesion volume and white matter integrity and novel object exploration and gait performance. Consequently, these analyses may also have the potential of predicting patient recovery at chronic time points as pigs and humans share many anatomical similarities (e.g., white matter composition) that have proven to be critical in ischemic stroke pathophysiology. The study was approved by the University of Georgia (UGA) Institutional Animal Care and Use Committee (IACUC; Protocol Number: A2014-07-021-Y3-A11 and 2018-01-029-Y1-A5) on November 22, 2017. Wolters Kluwer - Medknow 2020-11-16 /pmc/articles/PMC8178783/ /pubmed/33229718 http://dx.doi.org/10.4103/1673-5374.297079 Text en Copyright: © 2021 Neural Regeneration Research https://creativecommons.org/licenses/by-nc-sa/4.0/This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.
spellingShingle Research Article
Kaiser, Erin E.
Poythress, J.C.
Scheulin, Kelly M.
Jurgielewicz, Brian J.
Lazar, Nicole A.
Park, Cheolwoo
Stice, Steven L.
Ahn, Jeongyoun
West, Franklin D.
An integrative multivariate approach for predicting functional recovery using magnetic resonance imaging parameters in a translational pig ischemic stroke model
title An integrative multivariate approach for predicting functional recovery using magnetic resonance imaging parameters in a translational pig ischemic stroke model
title_full An integrative multivariate approach for predicting functional recovery using magnetic resonance imaging parameters in a translational pig ischemic stroke model
title_fullStr An integrative multivariate approach for predicting functional recovery using magnetic resonance imaging parameters in a translational pig ischemic stroke model
title_full_unstemmed An integrative multivariate approach for predicting functional recovery using magnetic resonance imaging parameters in a translational pig ischemic stroke model
title_short An integrative multivariate approach for predicting functional recovery using magnetic resonance imaging parameters in a translational pig ischemic stroke model
title_sort integrative multivariate approach for predicting functional recovery using magnetic resonance imaging parameters in a translational pig ischemic stroke model
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8178783/
https://www.ncbi.nlm.nih.gov/pubmed/33229718
http://dx.doi.org/10.4103/1673-5374.297079
work_keys_str_mv AT kaisererine anintegrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel
AT poythressjc anintegrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel
AT scheulinkellym anintegrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel
AT jurgielewiczbrianj anintegrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel
AT lazarnicolea anintegrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel
AT parkcheolwoo anintegrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel
AT sticestevenl anintegrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel
AT ahnjeongyoun anintegrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel
AT westfranklind anintegrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel
AT kaisererine integrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel
AT poythressjc integrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel
AT scheulinkellym integrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel
AT jurgielewiczbrianj integrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel
AT lazarnicolea integrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel
AT parkcheolwoo integrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel
AT sticestevenl integrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel
AT ahnjeongyoun integrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel
AT westfranklind integrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel