Cargando…
An integrative multivariate approach for predicting functional recovery using magnetic resonance imaging parameters in a translational pig ischemic stroke model
Magnetic resonance imaging (MRI) is a clinically relevant, real-time imaging modality that is frequently utilized to assess stroke type and severity. However, specific MRI biomarkers that can be used to predict long-term functional recovery are still a critical need. Consequently, the present study...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8178783/ https://www.ncbi.nlm.nih.gov/pubmed/33229718 http://dx.doi.org/10.4103/1673-5374.297079 |
_version_ | 1783703646194630656 |
---|---|
author | Kaiser, Erin E. Poythress, J.C. Scheulin, Kelly M. Jurgielewicz, Brian J. Lazar, Nicole A. Park, Cheolwoo Stice, Steven L. Ahn, Jeongyoun West, Franklin D. |
author_facet | Kaiser, Erin E. Poythress, J.C. Scheulin, Kelly M. Jurgielewicz, Brian J. Lazar, Nicole A. Park, Cheolwoo Stice, Steven L. Ahn, Jeongyoun West, Franklin D. |
author_sort | Kaiser, Erin E. |
collection | PubMed |
description | Magnetic resonance imaging (MRI) is a clinically relevant, real-time imaging modality that is frequently utilized to assess stroke type and severity. However, specific MRI biomarkers that can be used to predict long-term functional recovery are still a critical need. Consequently, the present study sought to examine the prognostic value of commonly utilized MRI parameters to predict functional outcomes in a porcine model of ischemic stroke. Stroke was induced via permanent middle cerebral artery occlusion. At 24 hours post-stroke, MRI analysis revealed focal ischemic lesions, decreased diffusivity, hemispheric swelling, and white matter degradation. Functional deficits including behavioral abnormalities in open field and novel object exploration as well as spatiotemporal gait impairments were observed at 4 weeks post-stroke. Gaussian graphical models identified specific MRI outputs and functional recovery variables, including white matter integrity and gait performance, that exhibited strong conditional dependencies. Canonical correlation analysis revealed a prognostic relationship between lesion volume and white matter integrity and novel object exploration and gait performance. Consequently, these analyses may also have the potential of predicting patient recovery at chronic time points as pigs and humans share many anatomical similarities (e.g., white matter composition) that have proven to be critical in ischemic stroke pathophysiology. The study was approved by the University of Georgia (UGA) Institutional Animal Care and Use Committee (IACUC; Protocol Number: A2014-07-021-Y3-A11 and 2018-01-029-Y1-A5) on November 22, 2017. |
format | Online Article Text |
id | pubmed-8178783 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Wolters Kluwer - Medknow |
record_format | MEDLINE/PubMed |
spelling | pubmed-81787832021-06-22 An integrative multivariate approach for predicting functional recovery using magnetic resonance imaging parameters in a translational pig ischemic stroke model Kaiser, Erin E. Poythress, J.C. Scheulin, Kelly M. Jurgielewicz, Brian J. Lazar, Nicole A. Park, Cheolwoo Stice, Steven L. Ahn, Jeongyoun West, Franklin D. Neural Regen Res Research Article Magnetic resonance imaging (MRI) is a clinically relevant, real-time imaging modality that is frequently utilized to assess stroke type and severity. However, specific MRI biomarkers that can be used to predict long-term functional recovery are still a critical need. Consequently, the present study sought to examine the prognostic value of commonly utilized MRI parameters to predict functional outcomes in a porcine model of ischemic stroke. Stroke was induced via permanent middle cerebral artery occlusion. At 24 hours post-stroke, MRI analysis revealed focal ischemic lesions, decreased diffusivity, hemispheric swelling, and white matter degradation. Functional deficits including behavioral abnormalities in open field and novel object exploration as well as spatiotemporal gait impairments were observed at 4 weeks post-stroke. Gaussian graphical models identified specific MRI outputs and functional recovery variables, including white matter integrity and gait performance, that exhibited strong conditional dependencies. Canonical correlation analysis revealed a prognostic relationship between lesion volume and white matter integrity and novel object exploration and gait performance. Consequently, these analyses may also have the potential of predicting patient recovery at chronic time points as pigs and humans share many anatomical similarities (e.g., white matter composition) that have proven to be critical in ischemic stroke pathophysiology. The study was approved by the University of Georgia (UGA) Institutional Animal Care and Use Committee (IACUC; Protocol Number: A2014-07-021-Y3-A11 and 2018-01-029-Y1-A5) on November 22, 2017. Wolters Kluwer - Medknow 2020-11-16 /pmc/articles/PMC8178783/ /pubmed/33229718 http://dx.doi.org/10.4103/1673-5374.297079 Text en Copyright: © 2021 Neural Regeneration Research https://creativecommons.org/licenses/by-nc-sa/4.0/This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms. |
spellingShingle | Research Article Kaiser, Erin E. Poythress, J.C. Scheulin, Kelly M. Jurgielewicz, Brian J. Lazar, Nicole A. Park, Cheolwoo Stice, Steven L. Ahn, Jeongyoun West, Franklin D. An integrative multivariate approach for predicting functional recovery using magnetic resonance imaging parameters in a translational pig ischemic stroke model |
title | An integrative multivariate approach for predicting functional recovery using magnetic resonance imaging parameters in a translational pig ischemic stroke model |
title_full | An integrative multivariate approach for predicting functional recovery using magnetic resonance imaging parameters in a translational pig ischemic stroke model |
title_fullStr | An integrative multivariate approach for predicting functional recovery using magnetic resonance imaging parameters in a translational pig ischemic stroke model |
title_full_unstemmed | An integrative multivariate approach for predicting functional recovery using magnetic resonance imaging parameters in a translational pig ischemic stroke model |
title_short | An integrative multivariate approach for predicting functional recovery using magnetic resonance imaging parameters in a translational pig ischemic stroke model |
title_sort | integrative multivariate approach for predicting functional recovery using magnetic resonance imaging parameters in a translational pig ischemic stroke model |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8178783/ https://www.ncbi.nlm.nih.gov/pubmed/33229718 http://dx.doi.org/10.4103/1673-5374.297079 |
work_keys_str_mv | AT kaisererine anintegrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel AT poythressjc anintegrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel AT scheulinkellym anintegrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel AT jurgielewiczbrianj anintegrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel AT lazarnicolea anintegrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel AT parkcheolwoo anintegrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel AT sticestevenl anintegrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel AT ahnjeongyoun anintegrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel AT westfranklind anintegrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel AT kaisererine integrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel AT poythressjc integrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel AT scheulinkellym integrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel AT jurgielewiczbrianj integrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel AT lazarnicolea integrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel AT parkcheolwoo integrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel AT sticestevenl integrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel AT ahnjeongyoun integrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel AT westfranklind integrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel |