Cargando…

Bridging photochemistry and photomechanics with NMR crystallography: the molecular basis for the macroscopic expansion of an anthracene ester nanorod

Crystals composed of photoreactive molecules represent a new class of photomechanical materials with the potential to generate large forces on fast timescales. An example is the photodimerization of 9-tert-butyl-anthracene ester (9TBAE) in molecular crystal nanorods that leads to an average elongati...

Descripción completa

Detalles Bibliográficos
Autores principales: Chalek, Kevin R., Dong, Xinning, Tong, Fei, Kudla, Ryan A., Zhu, Lingyan, Gill, Adam D., Xu, Wenwen, Yang, Chen, Hartman, Joshua D., Magalhães, Alviclér, Al-Kaysi, Rabih O., Hayward, Ryan C., Hooley, Richard J., Beran, Gregory J. O., Bardeen, Christopher J., Mueller, Leonard J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8178812/
https://www.ncbi.nlm.nih.gov/pubmed/34163608
http://dx.doi.org/10.1039/d0sc05118g
_version_ 1783703652414783488
author Chalek, Kevin R.
Dong, Xinning
Tong, Fei
Kudla, Ryan A.
Zhu, Lingyan
Gill, Adam D.
Xu, Wenwen
Yang, Chen
Hartman, Joshua D.
Magalhães, Alviclér
Al-Kaysi, Rabih O.
Hayward, Ryan C.
Hooley, Richard J.
Beran, Gregory J. O.
Bardeen, Christopher J.
Mueller, Leonard J.
author_facet Chalek, Kevin R.
Dong, Xinning
Tong, Fei
Kudla, Ryan A.
Zhu, Lingyan
Gill, Adam D.
Xu, Wenwen
Yang, Chen
Hartman, Joshua D.
Magalhães, Alviclér
Al-Kaysi, Rabih O.
Hayward, Ryan C.
Hooley, Richard J.
Beran, Gregory J. O.
Bardeen, Christopher J.
Mueller, Leonard J.
author_sort Chalek, Kevin R.
collection PubMed
description Crystals composed of photoreactive molecules represent a new class of photomechanical materials with the potential to generate large forces on fast timescales. An example is the photodimerization of 9-tert-butyl-anthracene ester (9TBAE) in molecular crystal nanorods that leads to an average elongation of 8%. Previous work showed that this expansion results from the formation of a metastable crystalline product. In this article, it is shown how a novel combination of ensemble oriented-crystal solid-state NMR, X-ray diffraction, and first principles computational modeling can be used to establish the absolute unit cell orientations relative to the shape change, revealing the atomic-resolution mechanism for the photomechanical response and enabling the construction of a model that predicts an elongation of 7.4%, in good agreement with the experimental value. According to this model, the nanorod expansion does not result from an overall change in the volume of the unit cell, but rather from an anisotropic rearrangement of the molecular contents. The ability to understand quantitatively how molecular-level photochemistry generates mechanical displacements allows us to predict that the expansion could be tuned from +9% to −9.5% by controlling the initial orientation of the unit cell with respect to the nanorod axis. This application of NMR-assisted crystallography provides a new tool capable of tying the atomic-level structural rearrangement of the reacting molecular species to the mechanical response of a nanostructured sample.
format Online
Article
Text
id pubmed-8178812
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-81788122021-06-22 Bridging photochemistry and photomechanics with NMR crystallography: the molecular basis for the macroscopic expansion of an anthracene ester nanorod Chalek, Kevin R. Dong, Xinning Tong, Fei Kudla, Ryan A. Zhu, Lingyan Gill, Adam D. Xu, Wenwen Yang, Chen Hartman, Joshua D. Magalhães, Alviclér Al-Kaysi, Rabih O. Hayward, Ryan C. Hooley, Richard J. Beran, Gregory J. O. Bardeen, Christopher J. Mueller, Leonard J. Chem Sci Chemistry Crystals composed of photoreactive molecules represent a new class of photomechanical materials with the potential to generate large forces on fast timescales. An example is the photodimerization of 9-tert-butyl-anthracene ester (9TBAE) in molecular crystal nanorods that leads to an average elongation of 8%. Previous work showed that this expansion results from the formation of a metastable crystalline product. In this article, it is shown how a novel combination of ensemble oriented-crystal solid-state NMR, X-ray diffraction, and first principles computational modeling can be used to establish the absolute unit cell orientations relative to the shape change, revealing the atomic-resolution mechanism for the photomechanical response and enabling the construction of a model that predicts an elongation of 7.4%, in good agreement with the experimental value. According to this model, the nanorod expansion does not result from an overall change in the volume of the unit cell, but rather from an anisotropic rearrangement of the molecular contents. The ability to understand quantitatively how molecular-level photochemistry generates mechanical displacements allows us to predict that the expansion could be tuned from +9% to −9.5% by controlling the initial orientation of the unit cell with respect to the nanorod axis. This application of NMR-assisted crystallography provides a new tool capable of tying the atomic-level structural rearrangement of the reacting molecular species to the mechanical response of a nanostructured sample. The Royal Society of Chemistry 2020-10-30 /pmc/articles/PMC8178812/ /pubmed/34163608 http://dx.doi.org/10.1039/d0sc05118g Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Chalek, Kevin R.
Dong, Xinning
Tong, Fei
Kudla, Ryan A.
Zhu, Lingyan
Gill, Adam D.
Xu, Wenwen
Yang, Chen
Hartman, Joshua D.
Magalhães, Alviclér
Al-Kaysi, Rabih O.
Hayward, Ryan C.
Hooley, Richard J.
Beran, Gregory J. O.
Bardeen, Christopher J.
Mueller, Leonard J.
Bridging photochemistry and photomechanics with NMR crystallography: the molecular basis for the macroscopic expansion of an anthracene ester nanorod
title Bridging photochemistry and photomechanics with NMR crystallography: the molecular basis for the macroscopic expansion of an anthracene ester nanorod
title_full Bridging photochemistry and photomechanics with NMR crystallography: the molecular basis for the macroscopic expansion of an anthracene ester nanorod
title_fullStr Bridging photochemistry and photomechanics with NMR crystallography: the molecular basis for the macroscopic expansion of an anthracene ester nanorod
title_full_unstemmed Bridging photochemistry and photomechanics with NMR crystallography: the molecular basis for the macroscopic expansion of an anthracene ester nanorod
title_short Bridging photochemistry and photomechanics with NMR crystallography: the molecular basis for the macroscopic expansion of an anthracene ester nanorod
title_sort bridging photochemistry and photomechanics with nmr crystallography: the molecular basis for the macroscopic expansion of an anthracene ester nanorod
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8178812/
https://www.ncbi.nlm.nih.gov/pubmed/34163608
http://dx.doi.org/10.1039/d0sc05118g
work_keys_str_mv AT chalekkevinr bridgingphotochemistryandphotomechanicswithnmrcrystallographythemolecularbasisforthemacroscopicexpansionofananthraceneesternanorod
AT dongxinning bridgingphotochemistryandphotomechanicswithnmrcrystallographythemolecularbasisforthemacroscopicexpansionofananthraceneesternanorod
AT tongfei bridgingphotochemistryandphotomechanicswithnmrcrystallographythemolecularbasisforthemacroscopicexpansionofananthraceneesternanorod
AT kudlaryana bridgingphotochemistryandphotomechanicswithnmrcrystallographythemolecularbasisforthemacroscopicexpansionofananthraceneesternanorod
AT zhulingyan bridgingphotochemistryandphotomechanicswithnmrcrystallographythemolecularbasisforthemacroscopicexpansionofananthraceneesternanorod
AT gilladamd bridgingphotochemistryandphotomechanicswithnmrcrystallographythemolecularbasisforthemacroscopicexpansionofananthraceneesternanorod
AT xuwenwen bridgingphotochemistryandphotomechanicswithnmrcrystallographythemolecularbasisforthemacroscopicexpansionofananthraceneesternanorod
AT yangchen bridgingphotochemistryandphotomechanicswithnmrcrystallographythemolecularbasisforthemacroscopicexpansionofananthraceneesternanorod
AT hartmanjoshuad bridgingphotochemistryandphotomechanicswithnmrcrystallographythemolecularbasisforthemacroscopicexpansionofananthraceneesternanorod
AT magalhaesalvicler bridgingphotochemistryandphotomechanicswithnmrcrystallographythemolecularbasisforthemacroscopicexpansionofananthraceneesternanorod
AT alkaysirabiho bridgingphotochemistryandphotomechanicswithnmrcrystallographythemolecularbasisforthemacroscopicexpansionofananthraceneesternanorod
AT haywardryanc bridgingphotochemistryandphotomechanicswithnmrcrystallographythemolecularbasisforthemacroscopicexpansionofananthraceneesternanorod
AT hooleyrichardj bridgingphotochemistryandphotomechanicswithnmrcrystallographythemolecularbasisforthemacroscopicexpansionofananthraceneesternanorod
AT berangregoryjo bridgingphotochemistryandphotomechanicswithnmrcrystallographythemolecularbasisforthemacroscopicexpansionofananthraceneesternanorod
AT bardeenchristopherj bridgingphotochemistryandphotomechanicswithnmrcrystallographythemolecularbasisforthemacroscopicexpansionofananthraceneesternanorod
AT muellerleonardj bridgingphotochemistryandphotomechanicswithnmrcrystallographythemolecularbasisforthemacroscopicexpansionofananthraceneesternanorod