Cargando…

Charge accumulation kinetics in multi-redox molecular catalysts immobilised on TiO(2)

Multi-redox catalysis requires the accumulation of more than one charge carrier and is crucial for solar energy conversion into fuels and valuable chemicals. In photo(electro)chemical systems, however, the necessary accumulation of multiple, long-lived charges is challenged by recombination with the...

Descripción completa

Detalles Bibliográficos
Autores principales: Bozal-Ginesta, Carlota, Mesa, Camilo A., Eisenschmidt, Annika, Francàs, Laia, Shankar, Ravi B., Antón-García, Daniel, Warnan, Julien, Willkomm, Janina, Reynal, Anna, Reisner, Erwin, Durrant, James R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8178996/
https://www.ncbi.nlm.nih.gov/pubmed/34163861
http://dx.doi.org/10.1039/d0sc04344c
_version_ 1783703689636085760
author Bozal-Ginesta, Carlota
Mesa, Camilo A.
Eisenschmidt, Annika
Francàs, Laia
Shankar, Ravi B.
Antón-García, Daniel
Warnan, Julien
Willkomm, Janina
Reynal, Anna
Reisner, Erwin
Durrant, James R.
author_facet Bozal-Ginesta, Carlota
Mesa, Camilo A.
Eisenschmidt, Annika
Francàs, Laia
Shankar, Ravi B.
Antón-García, Daniel
Warnan, Julien
Willkomm, Janina
Reynal, Anna
Reisner, Erwin
Durrant, James R.
author_sort Bozal-Ginesta, Carlota
collection PubMed
description Multi-redox catalysis requires the accumulation of more than one charge carrier and is crucial for solar energy conversion into fuels and valuable chemicals. In photo(electro)chemical systems, however, the necessary accumulation of multiple, long-lived charges is challenged by recombination with their counterparts. Herein, we investigate charge accumulation in two model multi-redox molecular catalysts for proton and CO(2) reduction attached onto mesoporous TiO(2) electrodes. Transient absorption spectroscopy and spectroelectrochemical techniques have been employed to study the kinetics of photoinduced electron transfer from the TiO(2) to the molecular catalysts in acetonitrile, with triethanolamine as the hole scavenger. At high light intensities, we detect charge accumulation in the millisecond timescale in the form of multi-reduced species. The redox potentials of the catalysts and the capacity of TiO(2) to accumulate electrons play an essential role in the charge accumulation process at the molecular catalyst. Recombination of reduced species with valence band holes in TiO(2) is observed to be faster than microseconds, while electron transfer from multi-reduced species to the conduction band or the electrolyte occurs in the millisecond timescale. Finally, under light irradiation, we show how charge accumulation on the catalyst is regulated as a function of the applied bias and the excitation light intensity.
format Online
Article
Text
id pubmed-8178996
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-81789962021-06-22 Charge accumulation kinetics in multi-redox molecular catalysts immobilised on TiO(2) Bozal-Ginesta, Carlota Mesa, Camilo A. Eisenschmidt, Annika Francàs, Laia Shankar, Ravi B. Antón-García, Daniel Warnan, Julien Willkomm, Janina Reynal, Anna Reisner, Erwin Durrant, James R. Chem Sci Chemistry Multi-redox catalysis requires the accumulation of more than one charge carrier and is crucial for solar energy conversion into fuels and valuable chemicals. In photo(electro)chemical systems, however, the necessary accumulation of multiple, long-lived charges is challenged by recombination with their counterparts. Herein, we investigate charge accumulation in two model multi-redox molecular catalysts for proton and CO(2) reduction attached onto mesoporous TiO(2) electrodes. Transient absorption spectroscopy and spectroelectrochemical techniques have been employed to study the kinetics of photoinduced electron transfer from the TiO(2) to the molecular catalysts in acetonitrile, with triethanolamine as the hole scavenger. At high light intensities, we detect charge accumulation in the millisecond timescale in the form of multi-reduced species. The redox potentials of the catalysts and the capacity of TiO(2) to accumulate electrons play an essential role in the charge accumulation process at the molecular catalyst. Recombination of reduced species with valence band holes in TiO(2) is observed to be faster than microseconds, while electron transfer from multi-reduced species to the conduction band or the electrolyte occurs in the millisecond timescale. Finally, under light irradiation, we show how charge accumulation on the catalyst is regulated as a function of the applied bias and the excitation light intensity. The Royal Society of Chemistry 2020-11-10 /pmc/articles/PMC8178996/ /pubmed/34163861 http://dx.doi.org/10.1039/d0sc04344c Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Bozal-Ginesta, Carlota
Mesa, Camilo A.
Eisenschmidt, Annika
Francàs, Laia
Shankar, Ravi B.
Antón-García, Daniel
Warnan, Julien
Willkomm, Janina
Reynal, Anna
Reisner, Erwin
Durrant, James R.
Charge accumulation kinetics in multi-redox molecular catalysts immobilised on TiO(2)
title Charge accumulation kinetics in multi-redox molecular catalysts immobilised on TiO(2)
title_full Charge accumulation kinetics in multi-redox molecular catalysts immobilised on TiO(2)
title_fullStr Charge accumulation kinetics in multi-redox molecular catalysts immobilised on TiO(2)
title_full_unstemmed Charge accumulation kinetics in multi-redox molecular catalysts immobilised on TiO(2)
title_short Charge accumulation kinetics in multi-redox molecular catalysts immobilised on TiO(2)
title_sort charge accumulation kinetics in multi-redox molecular catalysts immobilised on tio(2)
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8178996/
https://www.ncbi.nlm.nih.gov/pubmed/34163861
http://dx.doi.org/10.1039/d0sc04344c
work_keys_str_mv AT bozalginestacarlota chargeaccumulationkineticsinmultiredoxmolecularcatalystsimmobilisedontio2
AT mesacamiloa chargeaccumulationkineticsinmultiredoxmolecularcatalystsimmobilisedontio2
AT eisenschmidtannika chargeaccumulationkineticsinmultiredoxmolecularcatalystsimmobilisedontio2
AT francaslaia chargeaccumulationkineticsinmultiredoxmolecularcatalystsimmobilisedontio2
AT shankarravib chargeaccumulationkineticsinmultiredoxmolecularcatalystsimmobilisedontio2
AT antongarciadaniel chargeaccumulationkineticsinmultiredoxmolecularcatalystsimmobilisedontio2
AT warnanjulien chargeaccumulationkineticsinmultiredoxmolecularcatalystsimmobilisedontio2
AT willkommjanina chargeaccumulationkineticsinmultiredoxmolecularcatalystsimmobilisedontio2
AT reynalanna chargeaccumulationkineticsinmultiredoxmolecularcatalystsimmobilisedontio2
AT reisnererwin chargeaccumulationkineticsinmultiredoxmolecularcatalystsimmobilisedontio2
AT durrantjamesr chargeaccumulationkineticsinmultiredoxmolecularcatalystsimmobilisedontio2