Cargando…
Real-time imaging of surface chemical reactions by electrochemical photothermal reflectance microscopy
Traditional electrochemical measurements based on either current or potential responses only present the average contribution of an entire electrode's surface. Here, we present an electrochemical photothermal reflectance microscope (EPRM) in which a potential-dependent nonlinear photothermal si...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8179047/ https://www.ncbi.nlm.nih.gov/pubmed/34163957 http://dx.doi.org/10.1039/d0sc05132b |
_version_ | 1783703701238579200 |
---|---|
author | Zong, Cheng Zhang, Chi Lin, Peng Yin, Jiaze Bai, Yeran Lin, Haonan Ren, Bin Cheng, Ji-Xin |
author_facet | Zong, Cheng Zhang, Chi Lin, Peng Yin, Jiaze Bai, Yeran Lin, Haonan Ren, Bin Cheng, Ji-Xin |
author_sort | Zong, Cheng |
collection | PubMed |
description | Traditional electrochemical measurements based on either current or potential responses only present the average contribution of an entire electrode's surface. Here, we present an electrochemical photothermal reflectance microscope (EPRM) in which a potential-dependent nonlinear photothermal signal is exploited to map an electrochemical process with sub-micron spatial resolution. By using EPRM, we are able to monitor the photothermal signal of a Pt electrode during the electrochemical reaction at an imaging speed of 0.3 s per frame. The potential-dependent photothermal signal, which is sensitive to the free electron density, clearly revealed the evolution of surface species on the Pt surface. Our results agreed well with the reported spectroelectrochemical techniques under similar conditions but with a much faster imaging speed. We further mapped the potential oscillation during the oxidation of formic acid on the Pt surface. The photothermal images from the Pt electrode well matched the potential change. This technique opens new prospects for real-time imaging of surface chemical reaction to reveal the heterogeneity of electrochemical reactivity, which enables broad applications to the study of catalysis, energy storage, and light harvest systems. |
format | Online Article Text |
id | pubmed-8179047 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-81790472021-06-22 Real-time imaging of surface chemical reactions by electrochemical photothermal reflectance microscopy Zong, Cheng Zhang, Chi Lin, Peng Yin, Jiaze Bai, Yeran Lin, Haonan Ren, Bin Cheng, Ji-Xin Chem Sci Chemistry Traditional electrochemical measurements based on either current or potential responses only present the average contribution of an entire electrode's surface. Here, we present an electrochemical photothermal reflectance microscope (EPRM) in which a potential-dependent nonlinear photothermal signal is exploited to map an electrochemical process with sub-micron spatial resolution. By using EPRM, we are able to monitor the photothermal signal of a Pt electrode during the electrochemical reaction at an imaging speed of 0.3 s per frame. The potential-dependent photothermal signal, which is sensitive to the free electron density, clearly revealed the evolution of surface species on the Pt surface. Our results agreed well with the reported spectroelectrochemical techniques under similar conditions but with a much faster imaging speed. We further mapped the potential oscillation during the oxidation of formic acid on the Pt surface. The photothermal images from the Pt electrode well matched the potential change. This technique opens new prospects for real-time imaging of surface chemical reaction to reveal the heterogeneity of electrochemical reactivity, which enables broad applications to the study of catalysis, energy storage, and light harvest systems. The Royal Society of Chemistry 2020-12-15 /pmc/articles/PMC8179047/ /pubmed/34163957 http://dx.doi.org/10.1039/d0sc05132b Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Zong, Cheng Zhang, Chi Lin, Peng Yin, Jiaze Bai, Yeran Lin, Haonan Ren, Bin Cheng, Ji-Xin Real-time imaging of surface chemical reactions by electrochemical photothermal reflectance microscopy |
title | Real-time imaging of surface chemical reactions by electrochemical photothermal reflectance microscopy |
title_full | Real-time imaging of surface chemical reactions by electrochemical photothermal reflectance microscopy |
title_fullStr | Real-time imaging of surface chemical reactions by electrochemical photothermal reflectance microscopy |
title_full_unstemmed | Real-time imaging of surface chemical reactions by electrochemical photothermal reflectance microscopy |
title_short | Real-time imaging of surface chemical reactions by electrochemical photothermal reflectance microscopy |
title_sort | real-time imaging of surface chemical reactions by electrochemical photothermal reflectance microscopy |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8179047/ https://www.ncbi.nlm.nih.gov/pubmed/34163957 http://dx.doi.org/10.1039/d0sc05132b |
work_keys_str_mv | AT zongcheng realtimeimagingofsurfacechemicalreactionsbyelectrochemicalphotothermalreflectancemicroscopy AT zhangchi realtimeimagingofsurfacechemicalreactionsbyelectrochemicalphotothermalreflectancemicroscopy AT linpeng realtimeimagingofsurfacechemicalreactionsbyelectrochemicalphotothermalreflectancemicroscopy AT yinjiaze realtimeimagingofsurfacechemicalreactionsbyelectrochemicalphotothermalreflectancemicroscopy AT baiyeran realtimeimagingofsurfacechemicalreactionsbyelectrochemicalphotothermalreflectancemicroscopy AT linhaonan realtimeimagingofsurfacechemicalreactionsbyelectrochemicalphotothermalreflectancemicroscopy AT renbin realtimeimagingofsurfacechemicalreactionsbyelectrochemicalphotothermalreflectancemicroscopy AT chengjixin realtimeimagingofsurfacechemicalreactionsbyelectrochemicalphotothermalreflectancemicroscopy |