Cargando…
Discovery of a size-record breaking green-emissive fluorophore: small, smaller, HINA
Astonishingly, 3-hydroxyisonicotinealdehyde (HINA) is despite its small size a green-emitting push–pull fluorophore in water (QY of 15%) and shows ratiometric emission response to biological relevant pH differences (pK(a2) ∼ 7.1). Moreover, HINA is the first small-molecule fluorophore reported that...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8179180/ https://www.ncbi.nlm.nih.gov/pubmed/34163902 http://dx.doi.org/10.1039/d0sc05557c |
Sumario: | Astonishingly, 3-hydroxyisonicotinealdehyde (HINA) is despite its small size a green-emitting push–pull fluorophore in water (QY of 15%) and shows ratiometric emission response to biological relevant pH differences (pK(a2) ∼ 7.1). Moreover, HINA is the first small-molecule fluorophore reported that possesses three distinctly emissive protonation states. This fluorophore can be used in combination with metal complexes for fluorescent-based cysteine detection in aqueous media, and is readily taken up by cells. The theoretical description of HINA's photophysics remains challenging, even when computing Franck–Condon profiles via coupled-cluster calculations, making HINA an interesting model for future method development. |
---|