Cargando…
Prespacers formed during primed adaptation associate with the Cas1–Cas2 adaptation complex and the Cas3 interference nuclease–helicase
For Type I CRISPR-Cas systems, a mode of CRISPR adaptation named priming has been described. Priming allows specific and highly efficient acquisition of new spacers from DNA recognized (primed) by the Cascade-crRNA (CRISPR RNA) effector complex. Recognition of the priming protospacer by Cascade-crRN...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8179228/ https://www.ncbi.nlm.nih.gov/pubmed/34035168 http://dx.doi.org/10.1073/pnas.2021291118 |
Sumario: | For Type I CRISPR-Cas systems, a mode of CRISPR adaptation named priming has been described. Priming allows specific and highly efficient acquisition of new spacers from DNA recognized (primed) by the Cascade-crRNA (CRISPR RNA) effector complex. Recognition of the priming protospacer by Cascade-crRNA serves as a signal for engaging the Cas3 nuclease–helicase required for both interference and primed adaptation, suggesting the existence of a primed adaptation complex (PAC) containing the Cas1–Cas2 adaptation integrase and Cas3. To detect this complex in vivo, we here performed chromatin immunoprecipitation with Cas3-specific and Cas1-specific antibodies using cells undergoing primed adaptation. We found that prespacers are bound by both Cas1 (presumably, as part of the Cas1–Cas2 integrase) and Cas3, implying direct physical association of the interference and adaptation machineries as part of PAC. |
---|