Cargando…
Regio-selectivity prediction with a machine-learned reaction representation and on-the-fly quantum mechanical descriptors
Accurate and rapid evaluation of whether substrates can undergo the desired the transformation is crucial and challenging for both human knowledge and computer predictions. Despite the potential of machine learning in predicting chemical reactivity such as selectivity, popular feature engineering an...
Autores principales: | Guan, Yanfei, Coley, Connor W., Wu, Haoyang, Ranasinghe, Duminda, Heid, Esther, Struble, Thomas J., Pattanaik, Lagnajit, Green, William H., Jensen, Klavs F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8179287/ https://www.ncbi.nlm.nih.gov/pubmed/34163985 http://dx.doi.org/10.1039/d0sc04823b |
Ejemplares similares
-
Reactants, products, and transition states of elementary chemical reactions based on quantum chemistry
por: Grambow, Colin A., et al.
Publicado: (2020) -
Similarity based enzymatic retrosynthesis
por: Sankaranarayanan, Karthik, et al.
Publicado: (2022) -
Using Machine Learning To Predict Suitable Conditions
for Organic Reactions
por: Gao, Hanyu, et al.
Publicado: (2018) -
High accuracy barrier heights, enthalpies, and rate coefficients for chemical reactions
por: Spiekermann, Kevin, et al.
Publicado: (2022) -
Deep Learning of Activation Energies
por: Grambow, Colin A., et al.
Publicado: (2020)