Cargando…
Data-efficient machine learning for molecular crystal structure prediction
The combination of modern machine learning (ML) approaches with high-quality data from quantum mechanical (QM) calculations can yield models with an unrivalled accuracy/cost ratio. However, such methods are ultimately limited by the computational effort required to produce the reference data. In par...
Autores principales: | Wengert, Simon, Csányi, Gábor, Reuter, Karsten, Margraf, Johannes T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8179468/ https://www.ncbi.nlm.nih.gov/pubmed/34163719 http://dx.doi.org/10.1039/d0sc05765g |
Ejemplares similares
-
A Hybrid Machine Learning Approach for Structure Stability
Prediction in Molecular Co-crystal Screenings
por: Wengert, Simon, et al.
Publicado: (2022) -
Machine learning in chemical reaction space
por: Stocker, Sina, et al.
Publicado: (2020) -
Estimating Free
Energy Barriers for Heterogeneous
Catalytic Reactions with Machine Learning Potentials and Umbrella
Integration
por: Stocker, Sina, et al.
Publicado: (2023) -
Physics-inspired machine learning of localized intensive properties
por: Chen, Ke, et al.
Publicado: (2023) -
Pure non-local machine-learned density functional theory for electron correlation
por: Margraf, Johannes T., et al.
Publicado: (2021)