Cargando…
Expeditious synthesis of aromatic-free piperidinium-functionalized polyethylene as alkaline anion exchange membranes
Alkaline anion exchange membranes (AAEMs) with high hydroxide conductivity and good alkaline stability are essential for the development of anion exchange membrane fuel cells to generate clean energy by converting renewable fuels to electricity. Polyethylene-based AAEMs with excellent properties can...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8179501/ https://www.ncbi.nlm.nih.gov/pubmed/34163659 http://dx.doi.org/10.1039/d0sc05789d |
_version_ | 1783703796430405632 |
---|---|
author | You, Wei Ganley, Jacob M. Ernst, Brian G. Peltier, Cheyenne R. Ko, Hsin-Yu DiStasio, Robert A. Knowles, Robert R. Coates, Geoffrey W. |
author_facet | You, Wei Ganley, Jacob M. Ernst, Brian G. Peltier, Cheyenne R. Ko, Hsin-Yu DiStasio, Robert A. Knowles, Robert R. Coates, Geoffrey W. |
author_sort | You, Wei |
collection | PubMed |
description | Alkaline anion exchange membranes (AAEMs) with high hydroxide conductivity and good alkaline stability are essential for the development of anion exchange membrane fuel cells to generate clean energy by converting renewable fuels to electricity. Polyethylene-based AAEMs with excellent properties can be prepared via sequential ring-opening metathesis polymerization (ROMP) and hydrogenation of cyclooctene derivatives. However, one of the major limitations of this approach is the complicated multi-step synthesis of functionalized cyclooctene monomers. Herein, we report that piperidinium-functionalized cyclooctene monomers can be easily prepared via the photocatalytic hydroamination of cyclooctadiene with piperidine in a one-pot, two-step process to produce high-performance AAEMs. Possible alkaline-degradation pathways of the resultant polymers were analyzed using spectroscopic analysis and dispersion-inclusive hybrid density functional theory (DFT) calculations. Quite interestingly, our theoretical calculations indicate that local backbone morphology—which can potentially change the Hofmann elimination reaction rate constant by more than four orders of magnitude—is another important consideration in the rational design of stable high-performance AAEMs. |
format | Online Article Text |
id | pubmed-8179501 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-81795012021-06-22 Expeditious synthesis of aromatic-free piperidinium-functionalized polyethylene as alkaline anion exchange membranes You, Wei Ganley, Jacob M. Ernst, Brian G. Peltier, Cheyenne R. Ko, Hsin-Yu DiStasio, Robert A. Knowles, Robert R. Coates, Geoffrey W. Chem Sci Chemistry Alkaline anion exchange membranes (AAEMs) with high hydroxide conductivity and good alkaline stability are essential for the development of anion exchange membrane fuel cells to generate clean energy by converting renewable fuels to electricity. Polyethylene-based AAEMs with excellent properties can be prepared via sequential ring-opening metathesis polymerization (ROMP) and hydrogenation of cyclooctene derivatives. However, one of the major limitations of this approach is the complicated multi-step synthesis of functionalized cyclooctene monomers. Herein, we report that piperidinium-functionalized cyclooctene monomers can be easily prepared via the photocatalytic hydroamination of cyclooctadiene with piperidine in a one-pot, two-step process to produce high-performance AAEMs. Possible alkaline-degradation pathways of the resultant polymers were analyzed using spectroscopic analysis and dispersion-inclusive hybrid density functional theory (DFT) calculations. Quite interestingly, our theoretical calculations indicate that local backbone morphology—which can potentially change the Hofmann elimination reaction rate constant by more than four orders of magnitude—is another important consideration in the rational design of stable high-performance AAEMs. The Royal Society of Chemistry 2021-02-01 /pmc/articles/PMC8179501/ /pubmed/34163659 http://dx.doi.org/10.1039/d0sc05789d Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry You, Wei Ganley, Jacob M. Ernst, Brian G. Peltier, Cheyenne R. Ko, Hsin-Yu DiStasio, Robert A. Knowles, Robert R. Coates, Geoffrey W. Expeditious synthesis of aromatic-free piperidinium-functionalized polyethylene as alkaline anion exchange membranes |
title | Expeditious synthesis of aromatic-free piperidinium-functionalized polyethylene as alkaline anion exchange membranes |
title_full | Expeditious synthesis of aromatic-free piperidinium-functionalized polyethylene as alkaline anion exchange membranes |
title_fullStr | Expeditious synthesis of aromatic-free piperidinium-functionalized polyethylene as alkaline anion exchange membranes |
title_full_unstemmed | Expeditious synthesis of aromatic-free piperidinium-functionalized polyethylene as alkaline anion exchange membranes |
title_short | Expeditious synthesis of aromatic-free piperidinium-functionalized polyethylene as alkaline anion exchange membranes |
title_sort | expeditious synthesis of aromatic-free piperidinium-functionalized polyethylene as alkaline anion exchange membranes |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8179501/ https://www.ncbi.nlm.nih.gov/pubmed/34163659 http://dx.doi.org/10.1039/d0sc05789d |
work_keys_str_mv | AT youwei expeditioussynthesisofaromaticfreepiperidiniumfunctionalizedpolyethyleneasalkalineanionexchangemembranes AT ganleyjacobm expeditioussynthesisofaromaticfreepiperidiniumfunctionalizedpolyethyleneasalkalineanionexchangemembranes AT ernstbriang expeditioussynthesisofaromaticfreepiperidiniumfunctionalizedpolyethyleneasalkalineanionexchangemembranes AT peltiercheyenner expeditioussynthesisofaromaticfreepiperidiniumfunctionalizedpolyethyleneasalkalineanionexchangemembranes AT kohsinyu expeditioussynthesisofaromaticfreepiperidiniumfunctionalizedpolyethyleneasalkalineanionexchangemembranes AT distasioroberta expeditioussynthesisofaromaticfreepiperidiniumfunctionalizedpolyethyleneasalkalineanionexchangemembranes AT knowlesrobertr expeditioussynthesisofaromaticfreepiperidiniumfunctionalizedpolyethyleneasalkalineanionexchangemembranes AT coatesgeoffreyw expeditioussynthesisofaromaticfreepiperidiniumfunctionalizedpolyethyleneasalkalineanionexchangemembranes |