Cargando…
Machine learning dielectric screening for the simulation of excited state properties of molecules and materials
Accurate and efficient calculations of absorption spectra of molecules and materials are essential for the understanding and rational design of broad classes of systems. Solving the Bethe–Salpeter equation (BSE) for electron–hole pairs usually yields accurate predictions of absorption spectra, but i...
Autores principales: | Dong, Sijia S., Govoni, Marco, Galli, Giulia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8179553/ https://www.ncbi.nlm.nih.gov/pubmed/34163744 http://dx.doi.org/10.1039/d1sc00503k |
Ejemplares similares
-
Enhanced optical force on multilayered dielectric nanoparticles by tuning material properties and nature of excitation: a theoretical investigation
por: Yadav, Sumit, et al.
Publicado: (2022) -
Low-cost machine learning prediction of excited state properties of iridium-centered phosphors
por: Terrones, Gianmarco G., et al.
Publicado: (2023) -
Machine Learning for Electronically Excited States
of Molecules
por: Westermayr, Julia, et al.
Publicado: (2020) -
Strategic tuning of excited-state properties of electroluminescent materials with enhanced hot exciton mixing
por: Jayabharathi, Jayaraman, et al.
Publicado: (2019) -
Excited states: rotational effects on the behavior of excited molecules
por: Lim, Edward C, et al.
Publicado: (2013)