Cargando…

Plasmon-assisted click chemistry at low temperature: an inverse temperature effect on the reaction rate

Plasmon assistance promotes a range of chemical transformations by decreasing their activation energies. In a common case, thermal and plasmon assistance work synergistically: higher temperature results in higher plasmon-enhanced catalysis efficiency. Herein, we report an unexpected tenfold increase...

Descripción completa

Detalles Bibliográficos
Autores principales: Guselnikova, Olga, Váňa, Jiří, Phuong, Linh Trinh, Panov, Illia, Rulíšek, Lubomír, Trelin, Andrii, Postnikov, Pavel, Švorčík, Václav, Andris, Erik, Lyutakov, Oleksiy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8179579/
https://www.ncbi.nlm.nih.gov/pubmed/34163774
http://dx.doi.org/10.1039/d0sc05898j
_version_ 1783703814192234496
author Guselnikova, Olga
Váňa, Jiří
Phuong, Linh Trinh
Panov, Illia
Rulíšek, Lubomír
Trelin, Andrii
Postnikov, Pavel
Švorčík, Václav
Andris, Erik
Lyutakov, Oleksiy
author_facet Guselnikova, Olga
Váňa, Jiří
Phuong, Linh Trinh
Panov, Illia
Rulíšek, Lubomír
Trelin, Andrii
Postnikov, Pavel
Švorčík, Václav
Andris, Erik
Lyutakov, Oleksiy
author_sort Guselnikova, Olga
collection PubMed
description Plasmon assistance promotes a range of chemical transformations by decreasing their activation energies. In a common case, thermal and plasmon assistance work synergistically: higher temperature results in higher plasmon-enhanced catalysis efficiency. Herein, we report an unexpected tenfold increase in the reaction efficiency of surface plasmon-assisted Huisgen dipolar azide–alkyne cycloaddition (AAC) when the reaction mixture is cooled from room temperature to −35 °C. We attribute the observed increase in the reaction efficiency to complete plasmon-induced annihilation of the reaction barrier, prolongation of plasmon lifetime, and decreased relaxation of plasmon-excited-states under cooling. Furthermore, control quenching experiments supported by theoretical calculations indicate that plasmon-mediated substrate excitation to an electronic triplet state may play the key role in plasmon-assisted chemical transformation. Last but not least, we demonstrated the possible applicability of plasmon assistance to biological systems by AAC coupling of biotin to gold nanoparticles performed at −35 °C.
format Online
Article
Text
id pubmed-8179579
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-81795792021-06-22 Plasmon-assisted click chemistry at low temperature: an inverse temperature effect on the reaction rate Guselnikova, Olga Váňa, Jiří Phuong, Linh Trinh Panov, Illia Rulíšek, Lubomír Trelin, Andrii Postnikov, Pavel Švorčík, Václav Andris, Erik Lyutakov, Oleksiy Chem Sci Chemistry Plasmon assistance promotes a range of chemical transformations by decreasing their activation energies. In a common case, thermal and plasmon assistance work synergistically: higher temperature results in higher plasmon-enhanced catalysis efficiency. Herein, we report an unexpected tenfold increase in the reaction efficiency of surface plasmon-assisted Huisgen dipolar azide–alkyne cycloaddition (AAC) when the reaction mixture is cooled from room temperature to −35 °C. We attribute the observed increase in the reaction efficiency to complete plasmon-induced annihilation of the reaction barrier, prolongation of plasmon lifetime, and decreased relaxation of plasmon-excited-states under cooling. Furthermore, control quenching experiments supported by theoretical calculations indicate that plasmon-mediated substrate excitation to an electronic triplet state may play the key role in plasmon-assisted chemical transformation. Last but not least, we demonstrated the possible applicability of plasmon assistance to biological systems by AAC coupling of biotin to gold nanoparticles performed at −35 °C. The Royal Society of Chemistry 2021-03-15 /pmc/articles/PMC8179579/ /pubmed/34163774 http://dx.doi.org/10.1039/d0sc05898j Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Guselnikova, Olga
Váňa, Jiří
Phuong, Linh Trinh
Panov, Illia
Rulíšek, Lubomír
Trelin, Andrii
Postnikov, Pavel
Švorčík, Václav
Andris, Erik
Lyutakov, Oleksiy
Plasmon-assisted click chemistry at low temperature: an inverse temperature effect on the reaction rate
title Plasmon-assisted click chemistry at low temperature: an inverse temperature effect on the reaction rate
title_full Plasmon-assisted click chemistry at low temperature: an inverse temperature effect on the reaction rate
title_fullStr Plasmon-assisted click chemistry at low temperature: an inverse temperature effect on the reaction rate
title_full_unstemmed Plasmon-assisted click chemistry at low temperature: an inverse temperature effect on the reaction rate
title_short Plasmon-assisted click chemistry at low temperature: an inverse temperature effect on the reaction rate
title_sort plasmon-assisted click chemistry at low temperature: an inverse temperature effect on the reaction rate
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8179579/
https://www.ncbi.nlm.nih.gov/pubmed/34163774
http://dx.doi.org/10.1039/d0sc05898j
work_keys_str_mv AT guselnikovaolga plasmonassistedclickchemistryatlowtemperatureaninversetemperatureeffectonthereactionrate
AT vanajiri plasmonassistedclickchemistryatlowtemperatureaninversetemperatureeffectonthereactionrate
AT phuonglinhtrinh plasmonassistedclickchemistryatlowtemperatureaninversetemperatureeffectonthereactionrate
AT panovillia plasmonassistedclickchemistryatlowtemperatureaninversetemperatureeffectonthereactionrate
AT ruliseklubomir plasmonassistedclickchemistryatlowtemperatureaninversetemperatureeffectonthereactionrate
AT trelinandrii plasmonassistedclickchemistryatlowtemperatureaninversetemperatureeffectonthereactionrate
AT postnikovpavel plasmonassistedclickchemistryatlowtemperatureaninversetemperatureeffectonthereactionrate
AT svorcikvaclav plasmonassistedclickchemistryatlowtemperatureaninversetemperatureeffectonthereactionrate
AT andriserik plasmonassistedclickchemistryatlowtemperatureaninversetemperatureeffectonthereactionrate
AT lyutakovoleksiy plasmonassistedclickchemistryatlowtemperatureaninversetemperatureeffectonthereactionrate