Cargando…
Multiplexed optical barcoding of cells via photochemical programming of bioorthogonal host–guest recognition
Modern chemical and biological studies are undergoing a paradigm shift, where understanding the fate of individual cells, in an apparently homogeneous population, is becoming increasingly important. This has inculcated a growing demand for developing strategies that label individual cells with uniqu...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8179588/ https://www.ncbi.nlm.nih.gov/pubmed/34163769 http://dx.doi.org/10.1039/d0sc06860h |
_version_ | 1783703816328183808 |
---|---|
author | Som, Arka Pahwa, Meenakshi Bawari, Sumit Saha, Nilanjana Das Sasmal, Ranjan Bosco, Monica Swetha Mondal, Jagannath Agasti, Sarit S. |
author_facet | Som, Arka Pahwa, Meenakshi Bawari, Sumit Saha, Nilanjana Das Sasmal, Ranjan Bosco, Monica Swetha Mondal, Jagannath Agasti, Sarit S. |
author_sort | Som, Arka |
collection | PubMed |
description | Modern chemical and biological studies are undergoing a paradigm shift, where understanding the fate of individual cells, in an apparently homogeneous population, is becoming increasingly important. This has inculcated a growing demand for developing strategies that label individual cells with unique fluorescent signatures or barcodes so that their spatiotemporal trajectories can be mapped in real time. Among various approaches, light-regulated methods employing photocaged fluorophores have received particular attention, owing to their fine spatiotemporal control over labelling. However, their multiplexed use to barcode large numbers of cells for interrogating cellular libraries or complex tissues remains inherently challenging, due to the lack of multiple spectrally distinct photoactivated states in the currently available photocaged fluorophores. We report here an alternative multiplexable strategy based on optically controlled host–guest recognition in the cucurbit[7]uril (CB[7]) system that provides spatial control over the positioning of fluorophores to generate distinct barcodes in ‘user-defined’ cells. Using a combination of three spectrally distinct CB[7]-conjugated fluorophores and by sequentially performing cycles of photoactivation and fluorophore encoding, we demonstrate 10-color barcoding in microtubule-targeted fixed cells as well as 7-color barcoding in cell surface glycan targeted live MCF7 cells. |
format | Online Article Text |
id | pubmed-8179588 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-81795882021-06-22 Multiplexed optical barcoding of cells via photochemical programming of bioorthogonal host–guest recognition Som, Arka Pahwa, Meenakshi Bawari, Sumit Saha, Nilanjana Das Sasmal, Ranjan Bosco, Monica Swetha Mondal, Jagannath Agasti, Sarit S. Chem Sci Chemistry Modern chemical and biological studies are undergoing a paradigm shift, where understanding the fate of individual cells, in an apparently homogeneous population, is becoming increasingly important. This has inculcated a growing demand for developing strategies that label individual cells with unique fluorescent signatures or barcodes so that their spatiotemporal trajectories can be mapped in real time. Among various approaches, light-regulated methods employing photocaged fluorophores have received particular attention, owing to their fine spatiotemporal control over labelling. However, their multiplexed use to barcode large numbers of cells for interrogating cellular libraries or complex tissues remains inherently challenging, due to the lack of multiple spectrally distinct photoactivated states in the currently available photocaged fluorophores. We report here an alternative multiplexable strategy based on optically controlled host–guest recognition in the cucurbit[7]uril (CB[7]) system that provides spatial control over the positioning of fluorophores to generate distinct barcodes in ‘user-defined’ cells. Using a combination of three spectrally distinct CB[7]-conjugated fluorophores and by sequentially performing cycles of photoactivation and fluorophore encoding, we demonstrate 10-color barcoding in microtubule-targeted fixed cells as well as 7-color barcoding in cell surface glycan targeted live MCF7 cells. The Royal Society of Chemistry 2021-02-19 /pmc/articles/PMC8179588/ /pubmed/34163769 http://dx.doi.org/10.1039/d0sc06860h Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Som, Arka Pahwa, Meenakshi Bawari, Sumit Saha, Nilanjana Das Sasmal, Ranjan Bosco, Monica Swetha Mondal, Jagannath Agasti, Sarit S. Multiplexed optical barcoding of cells via photochemical programming of bioorthogonal host–guest recognition |
title | Multiplexed optical barcoding of cells via photochemical programming of bioorthogonal host–guest recognition |
title_full | Multiplexed optical barcoding of cells via photochemical programming of bioorthogonal host–guest recognition |
title_fullStr | Multiplexed optical barcoding of cells via photochemical programming of bioorthogonal host–guest recognition |
title_full_unstemmed | Multiplexed optical barcoding of cells via photochemical programming of bioorthogonal host–guest recognition |
title_short | Multiplexed optical barcoding of cells via photochemical programming of bioorthogonal host–guest recognition |
title_sort | multiplexed optical barcoding of cells via photochemical programming of bioorthogonal host–guest recognition |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8179588/ https://www.ncbi.nlm.nih.gov/pubmed/34163769 http://dx.doi.org/10.1039/d0sc06860h |
work_keys_str_mv | AT somarka multiplexedopticalbarcodingofcellsviaphotochemicalprogrammingofbioorthogonalhostguestrecognition AT pahwameenakshi multiplexedopticalbarcodingofcellsviaphotochemicalprogrammingofbioorthogonalhostguestrecognition AT bawarisumit multiplexedopticalbarcodingofcellsviaphotochemicalprogrammingofbioorthogonalhostguestrecognition AT sahanilanjanadas multiplexedopticalbarcodingofcellsviaphotochemicalprogrammingofbioorthogonalhostguestrecognition AT sasmalranjan multiplexedopticalbarcodingofcellsviaphotochemicalprogrammingofbioorthogonalhostguestrecognition AT boscomonicaswetha multiplexedopticalbarcodingofcellsviaphotochemicalprogrammingofbioorthogonalhostguestrecognition AT mondaljagannath multiplexedopticalbarcodingofcellsviaphotochemicalprogrammingofbioorthogonalhostguestrecognition AT agastisarits multiplexedopticalbarcodingofcellsviaphotochemicalprogrammingofbioorthogonalhostguestrecognition |