Cargando…

An Artificial-Intelligence- and Telemedicine-Based Screening Tool to Identify Glaucoma Suspects from Color Fundus Imaging

RESULTS: The system achieved an accuracy of 89.67% (sensitivity, 83.33%; specificity, 93.89%; and AUC, 0.93). For external validation, the Retinal Fundus Image Database for Glaucoma Analysis dataset, which has 638 gradable quality images, was used. Here, the model achieved an accuracy of 83.54% (sen...

Descripción completa

Detalles Bibliográficos
Autores principales: Bhuiyan, Alauddin, Govindaiah, Arun, Smith, R. Theodore
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8179760/
https://www.ncbi.nlm.nih.gov/pubmed/34136281
http://dx.doi.org/10.1155/2021/6694784
_version_ 1783703855729475584
author Bhuiyan, Alauddin
Govindaiah, Arun
Smith, R. Theodore
author_facet Bhuiyan, Alauddin
Govindaiah, Arun
Smith, R. Theodore
author_sort Bhuiyan, Alauddin
collection PubMed
description RESULTS: The system achieved an accuracy of 89.67% (sensitivity, 83.33%; specificity, 93.89%; and AUC, 0.93). For external validation, the Retinal Fundus Image Database for Glaucoma Analysis dataset, which has 638 gradable quality images, was used. Here, the model achieved an accuracy of 83.54% (sensitivity, 80.11%; specificity, 84.96%; and AUC, 0.85). CONCLUSIONS: Having demonstrated an accurate and fully automated glaucoma-suspect screening system that can be deployed on telemedicine platforms, we plan prospective trials to determine the feasibility of the system in primary-care settings.
format Online
Article
Text
id pubmed-8179760
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-81797602021-06-15 An Artificial-Intelligence- and Telemedicine-Based Screening Tool to Identify Glaucoma Suspects from Color Fundus Imaging Bhuiyan, Alauddin Govindaiah, Arun Smith, R. Theodore J Ophthalmol Research Article RESULTS: The system achieved an accuracy of 89.67% (sensitivity, 83.33%; specificity, 93.89%; and AUC, 0.93). For external validation, the Retinal Fundus Image Database for Glaucoma Analysis dataset, which has 638 gradable quality images, was used. Here, the model achieved an accuracy of 83.54% (sensitivity, 80.11%; specificity, 84.96%; and AUC, 0.85). CONCLUSIONS: Having demonstrated an accurate and fully automated glaucoma-suspect screening system that can be deployed on telemedicine platforms, we plan prospective trials to determine the feasibility of the system in primary-care settings. Hindawi 2021-05-28 /pmc/articles/PMC8179760/ /pubmed/34136281 http://dx.doi.org/10.1155/2021/6694784 Text en Copyright © 2021 Alauddin Bhuiyan et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Bhuiyan, Alauddin
Govindaiah, Arun
Smith, R. Theodore
An Artificial-Intelligence- and Telemedicine-Based Screening Tool to Identify Glaucoma Suspects from Color Fundus Imaging
title An Artificial-Intelligence- and Telemedicine-Based Screening Tool to Identify Glaucoma Suspects from Color Fundus Imaging
title_full An Artificial-Intelligence- and Telemedicine-Based Screening Tool to Identify Glaucoma Suspects from Color Fundus Imaging
title_fullStr An Artificial-Intelligence- and Telemedicine-Based Screening Tool to Identify Glaucoma Suspects from Color Fundus Imaging
title_full_unstemmed An Artificial-Intelligence- and Telemedicine-Based Screening Tool to Identify Glaucoma Suspects from Color Fundus Imaging
title_short An Artificial-Intelligence- and Telemedicine-Based Screening Tool to Identify Glaucoma Suspects from Color Fundus Imaging
title_sort artificial-intelligence- and telemedicine-based screening tool to identify glaucoma suspects from color fundus imaging
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8179760/
https://www.ncbi.nlm.nih.gov/pubmed/34136281
http://dx.doi.org/10.1155/2021/6694784
work_keys_str_mv AT bhuiyanalauddin anartificialintelligenceandtelemedicinebasedscreeningtooltoidentifyglaucomasuspectsfromcolorfundusimaging
AT govindaiaharun anartificialintelligenceandtelemedicinebasedscreeningtooltoidentifyglaucomasuspectsfromcolorfundusimaging
AT smithrtheodore anartificialintelligenceandtelemedicinebasedscreeningtooltoidentifyglaucomasuspectsfromcolorfundusimaging
AT bhuiyanalauddin artificialintelligenceandtelemedicinebasedscreeningtooltoidentifyglaucomasuspectsfromcolorfundusimaging
AT govindaiaharun artificialintelligenceandtelemedicinebasedscreeningtooltoidentifyglaucomasuspectsfromcolorfundusimaging
AT smithrtheodore artificialintelligenceandtelemedicinebasedscreeningtooltoidentifyglaucomasuspectsfromcolorfundusimaging