Cargando…
An Artificial-Intelligence- and Telemedicine-Based Screening Tool to Identify Glaucoma Suspects from Color Fundus Imaging
RESULTS: The system achieved an accuracy of 89.67% (sensitivity, 83.33%; specificity, 93.89%; and AUC, 0.93). For external validation, the Retinal Fundus Image Database for Glaucoma Analysis dataset, which has 638 gradable quality images, was used. Here, the model achieved an accuracy of 83.54% (sen...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8179760/ https://www.ncbi.nlm.nih.gov/pubmed/34136281 http://dx.doi.org/10.1155/2021/6694784 |
_version_ | 1783703855729475584 |
---|---|
author | Bhuiyan, Alauddin Govindaiah, Arun Smith, R. Theodore |
author_facet | Bhuiyan, Alauddin Govindaiah, Arun Smith, R. Theodore |
author_sort | Bhuiyan, Alauddin |
collection | PubMed |
description | RESULTS: The system achieved an accuracy of 89.67% (sensitivity, 83.33%; specificity, 93.89%; and AUC, 0.93). For external validation, the Retinal Fundus Image Database for Glaucoma Analysis dataset, which has 638 gradable quality images, was used. Here, the model achieved an accuracy of 83.54% (sensitivity, 80.11%; specificity, 84.96%; and AUC, 0.85). CONCLUSIONS: Having demonstrated an accurate and fully automated glaucoma-suspect screening system that can be deployed on telemedicine platforms, we plan prospective trials to determine the feasibility of the system in primary-care settings. |
format | Online Article Text |
id | pubmed-8179760 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-81797602021-06-15 An Artificial-Intelligence- and Telemedicine-Based Screening Tool to Identify Glaucoma Suspects from Color Fundus Imaging Bhuiyan, Alauddin Govindaiah, Arun Smith, R. Theodore J Ophthalmol Research Article RESULTS: The system achieved an accuracy of 89.67% (sensitivity, 83.33%; specificity, 93.89%; and AUC, 0.93). For external validation, the Retinal Fundus Image Database for Glaucoma Analysis dataset, which has 638 gradable quality images, was used. Here, the model achieved an accuracy of 83.54% (sensitivity, 80.11%; specificity, 84.96%; and AUC, 0.85). CONCLUSIONS: Having demonstrated an accurate and fully automated glaucoma-suspect screening system that can be deployed on telemedicine platforms, we plan prospective trials to determine the feasibility of the system in primary-care settings. Hindawi 2021-05-28 /pmc/articles/PMC8179760/ /pubmed/34136281 http://dx.doi.org/10.1155/2021/6694784 Text en Copyright © 2021 Alauddin Bhuiyan et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Bhuiyan, Alauddin Govindaiah, Arun Smith, R. Theodore An Artificial-Intelligence- and Telemedicine-Based Screening Tool to Identify Glaucoma Suspects from Color Fundus Imaging |
title | An Artificial-Intelligence- and Telemedicine-Based Screening Tool to Identify Glaucoma Suspects from Color Fundus Imaging |
title_full | An Artificial-Intelligence- and Telemedicine-Based Screening Tool to Identify Glaucoma Suspects from Color Fundus Imaging |
title_fullStr | An Artificial-Intelligence- and Telemedicine-Based Screening Tool to Identify Glaucoma Suspects from Color Fundus Imaging |
title_full_unstemmed | An Artificial-Intelligence- and Telemedicine-Based Screening Tool to Identify Glaucoma Suspects from Color Fundus Imaging |
title_short | An Artificial-Intelligence- and Telemedicine-Based Screening Tool to Identify Glaucoma Suspects from Color Fundus Imaging |
title_sort | artificial-intelligence- and telemedicine-based screening tool to identify glaucoma suspects from color fundus imaging |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8179760/ https://www.ncbi.nlm.nih.gov/pubmed/34136281 http://dx.doi.org/10.1155/2021/6694784 |
work_keys_str_mv | AT bhuiyanalauddin anartificialintelligenceandtelemedicinebasedscreeningtooltoidentifyglaucomasuspectsfromcolorfundusimaging AT govindaiaharun anartificialintelligenceandtelemedicinebasedscreeningtooltoidentifyglaucomasuspectsfromcolorfundusimaging AT smithrtheodore anartificialintelligenceandtelemedicinebasedscreeningtooltoidentifyglaucomasuspectsfromcolorfundusimaging AT bhuiyanalauddin artificialintelligenceandtelemedicinebasedscreeningtooltoidentifyglaucomasuspectsfromcolorfundusimaging AT govindaiaharun artificialintelligenceandtelemedicinebasedscreeningtooltoidentifyglaucomasuspectsfromcolorfundusimaging AT smithrtheodore artificialintelligenceandtelemedicinebasedscreeningtooltoidentifyglaucomasuspectsfromcolorfundusimaging |