Cargando…
An Artificial-Intelligence- and Telemedicine-Based Screening Tool to Identify Glaucoma Suspects from Color Fundus Imaging
RESULTS: The system achieved an accuracy of 89.67% (sensitivity, 83.33%; specificity, 93.89%; and AUC, 0.93). For external validation, the Retinal Fundus Image Database for Glaucoma Analysis dataset, which has 638 gradable quality images, was used. Here, the model achieved an accuracy of 83.54% (sen...
Autores principales: | Bhuiyan, Alauddin, Govindaiah, Arun, Smith, R. Theodore |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8179760/ https://www.ncbi.nlm.nih.gov/pubmed/34136281 http://dx.doi.org/10.1155/2021/6694784 |
Ejemplares similares
-
Optimized Prediction Models from Fundus Imaging and Genetics for Late Age-Related Macular Degeneration
por: Govindaiah, Arun, et al.
Publicado: (2021) -
Combined automated screening for age-related macular degeneration and diabetic retinopathy in primary care settings
por: Bhuiyan, Alauddin, et al.
Publicado: (2021) -
Development and Validation of an Automated Diabetic Retinopathy Screening Tool for Primary Care Setting
por: Bhuiyan, Alauddin, et al.
Publicado: (2020) -
Artificial Intelligence to Stratify Severity of Age-Related Macular Degeneration (AMD) and Predict Risk of Progression to Late AMD
por: Bhuiyan, Alauddin, et al.
Publicado: (2020) -
Artificial Intelligence to Identify Retinal Fundus Images, Quality Validation, Laterality Evaluation, Macular Degeneration, and Suspected Glaucoma
por: Zapata, Miguel Angel, et al.
Publicado: (2020)